WHIT'S 10 10 A

AM-FM-TV STATIDNS NEW EXPANDED wORLO-WIDE SHORT-WAVE LISTIMGS:

28HOTTEST MEW KITS FOR ' $64!$
New FCC Rullngs On Taxes. Licensing!

PLANS FOR 10

 PROJECTS, includingSI broadcast band blooster! SI5 LIEHT METE CALIBRATOR! S750 POWER TOOL SPEED CONTROLLER!
COMPLETE

PLAMS!

ELECTRONICS LAB AND RADIO COURSE
 CARION MUC POPHONI oC powte sumply oc powit suppir
 for elestronics.
stmost tIGNT
 SIGense." All you \qquad and continuity teste

ingione enioct
OCI thea
Nurfe: Pearanc
 poximity oiticton, fxinction votimita THIRMOCOUPE, SOLINOIO COIN TOSSER, and GAIVANOMETER,
 A valuable fiectionies tas with aqolivy poits by ica. ef. Preamd. C+nitolat. Tomem, Stathpole, Cinct, Mollory and othet Inclurles hardware, hook up wire, solder and o bonus fitciele
Snloteinc illon. SNIDERING IRON
(A voilable as a Separate Unit for $\$ 17.80$ Postpaid)

PHOTOELECTRONIC RELAY

MICROSCOPE

PHOTO DARKROOM LAB

8 KIT MASTER LAB Includes $A C L$ the Equipment for $A C L$ the Above... only $\$ 5560$
 YOUR SATISFACTION OR MONEY BACK

HOW IS IT POSSIBLE?... A GOOD QUESTION! All the above equipment, as separate units, adds up to over $\$ 10000$ How can the 8 kit Master Lab have it all for only $\$ 33.60$? The onswer is in the versotile, multi-purpose equipment. For exomple: the 35 MM Pro. iector quickly ond easily converts into the housing for the Ultroviolet Lomp. Spectro.
scope, Photo Enlorger, Cloud Chomber illuminator, elc Similotly
 Tronsmitter-Receiver is mode up of the two stage Audio. Amplifier of the ligh Beam Lob and parts of the Slide Projector ond Photoelectionic Units. Such multi-purpose use mokes it possible for the moster Lob to provide o wide songe of procticol equipment ot of froction of the customory cost. Multr-purpose design is not used where it would be impracticol: for the permanently mounted weother instruments, for example

KIT-A-MONTH OR ALI AT ONCE

The Morvet tob may be recerved esther on the hive

received 3 lins, you decide you would tike the having ing 5 ali of once, you would rend $\$ 19.75$, 5 , $\$ 3.951$ lor full papment, polloge poid, We iupgety you nort

DEVELOPED BY TOP SCIENTISTS

The Màster Lab was develaped with the Southwest Research Institute af San Antonio Texos, a non-profit public service orgonization, nationolly known as the center o scientific activity in the Southwest. Its varied programs ronge from palar expeditions he gh remperature experiments for missile research. The Master lob is the result af

ACCIAIMFD BY EDUCATORS

 phs presenied, and the latos atotien. The numberess of whell development Eon Conolm, Prol, ol Physich omasing.Order MASTEG LAE Todoy Get MYSTERY
shock rox
with
firsit
kif!

MASTER LAB A REAL SCIENCE COURSE

The 8 Instruction Manuals and 6 Auxiliary Texts are Expertly Written, Clearly Illustroted, Excitingly Different over 480 pages. . . more than 270 illustrations. WITHOUT PREVIOUS EXPERIENCE you can build more than 120 projects and gain a VALUABLE SCIENCE BACKGROUND. Actual Use is the Only Way to Appreciote the MASTER LAB! Order Yours Today on 10 Doy Approval. See for Yourself: You Will be SURPRISED! AMAIED! DELIENTED!
 All Orders on 10 Day Approval - Your Solisfoction or Your Money Back [] Send me the complete MASTER LAB in 8 monthly kits. 1 enclose $\$ 2.00$ and will pay $\$ 3.95$ plus cod pastage on reseipt of each kit. I moy concel unshipped kits at any time.
\qquad Send me complete MASTER LAB (all 8 kits) in one shipment I enclose $\$ 33.00$ Full Payment, Postoge Poid.
\square Send me only the ull Poyment, Postage Paid

NAME
ADDRESS
GITY \& STATE
AMERICAN BASTC SCIENCE CLUB, INC.

501 East Crocket St, Son Antonio 2, Texos, 78202

ARTHUR GODFREY SAYS: "I.C.S. MADE THE IMPOSSIBLE-EASY!"

You've probably heard Arthur Godfrey on his coast-to. coast TV and radio programs. But have you ever heard what this famous personality has to say on the subject of International Correspondence Schools?
"I had to quit high schogl before the end of my second year. Later in life, al the U.S. Naval Materiel School at Bellevue, D. C., I had to master a working knowledge of math, all the way from simple decimals and fractions through trigonometry, in the first six weeks or be dropped from the course. So I took an I.C.S. course and finished at the head of the class! I.C.S. made the impossible - casy!"

As usual, Arthur Godfrey knows what he's talking about. And as an I.C.S. graduate, Mr. Godfrey is in the best of all positions to tell you about the educational system for men and women that's served so long as talent scout for American business and industry.

Read what he has to say carefully. Then mark your interest on the coupon and mail it today for full informa. tion on what I.C.S. can do for you!

INTERAATIOHAL GORRESPOKDENGE SCHOOLS

I (m)

Box F4534M, Scranton, Penna. 18515
(In Hzwail: P. O. Box 418, Honolulu. In Canada: I. C. S. Canadian, Ltd., Montreal.) Without cost or obligation, rush me FREE Success Kit, with 3 valuable booklets: (1) How to Succeed; (2) opportunity booklet about the field I've checked below; (3) sample I.C.S. lesson.

AMCHITECTURE And	aviation	Nuclear Energy	ELECTAONICS		
BUILDING TAADE	Aero Engineering	Plastics		Coilege Preparatery	Shorthand Stenographic
\square Alr Conditloning	Q Alrcraft Orafting	\square Pulp, Paper	- Basic Electronics		\square Typlst
Archltecture	- Alrcraft Mechanic	CIVIL ENOINEERINO	- Electronic Computers	(Edlted by Eeriltz)	
Arch. Drawing	EUSINESS	\square Civil Engineerlng	Elecironlss Jechnician	Edited by Eeritz) French	STEAM and DIESEL POWER
\square Carpentry 8 Millwork	Accounting	- Highway Blueprints	CHI-FI Stereo and	German	DIESEL POWER [] Boller Inspector
House Plannlng	- Cost Accounting	- Highway Engineering	Sound Systems	- Italian	Boiler Inspector Power Plant
7_{0} Painting	- Public Accountin	D Structural Blueprints	\square Industrial Electronics	- Spanish	Power Plant
\square Plumbing \& Heating	- Bus. Administration	- Sanitary Engineering	EMOINEEAINE	MECHANICAL and SHOP	\square Stationary Diese!
		- Structural Engineering	(Prolessinnal)		Engineering
ART and DESIGN		\square Surveying \& Mapping drarting	Chemlcal	Gas and Weiding	\square Steam Engineering
Interior Decorating	\square Personael-Labor	\square Architectural		\square Industrial Engineering	SUPERVISIOM
Magezine Illustrating	Relations	Coratting Technology	Mechanical	Industrial	\square Foremanship-Suprvin
Show Card \& Sign	- Programming for	\square Electrical and	ENGLISH and Whitina	Instrumentation	\square Personnel-Lab. Rel'ns
Painting	Purchaslng Agent	${ }^{\text {Electronic }}$	[] Better Business	Machine Shop Practice	TV.RAOIO
\square Sketching and Painting	Purchasing Agent	\square Mechanical	\square Wrlting	Mechanjcal	\square Radia and TV
AUTOMDTIVE	Satesmans hip Sales Mgmt.	Elec. Appllance	- Introductory	Engineerlng	Radlo-Tefephone License
Auto Electric	- Small Business Mgmt.	Servicing Engineering	\square Short Story wrling	Blueprints	\square TV Techniclan
Technician	\square Traffic Mgmt.	Q Ectrical Engineering	\square Practlcal English	\square Tool Design	\square Practical Radio-TV
Automobile Mechanic	CHEMICAL	Industrlal	HIOM SCHOOL (Diplouta)	Toolmaking	Engineering
Engine (Cas a Diesel)	DAnalytical Chemistry	Telemetering		\square Satety Ensincering	Miscellaneous
Engine Tune-Up	Chem. Englneerligg	\square instrument fechnicla	- High school Math	SECRETARIAL.	\square Textlle
Transmission Speclalist	General Chemistry Lab. Techniclan	Practical Electriclan Practical LIneman	High School Secretarial	Clerk-Typlst Professional Secratary	\square Other (piease speclfy)
Name					S
Home Address					
CIty			7 T	State	
Decupation					
Employed		Worklng Ho	Special	rates to members of	U. S. Armed Forces?

RADID-TV EXPERIMENTER

CONTENTS/INDEX	\%		$\begin{aligned} & \text { 훈 } \\ & \stackrel{4}{1} \end{aligned}$						$\stackrel{\rightharpoonup}{3}$	$\begin{array}{\|l\|l\|} \hline \text { 늗 } \\ \dot{\bar{y}} \\ \text { 을 } \end{array}$						袌
FM Pocket Mike 41				\bullet										-		\bullet
Echo Collecting 47	\bullet	-	-	-						-					\bullet	-
Indoor Antenna Systems 52	\bullet										-			-		
Hams Make Happy Hushands 54	-					-										
Putting the Middle Channel to Work. 57		-	-	\bullet						-						\bullet
Kit Builders Report 61	-			-		-			-		-					
Lissajous Figure Quiz.............. 64	-	-	-										-			
CB Keeps Hot News Hot 65	-						-									
Wacky Woman with Wollensak67	-									-						
Electronics Monitors Body Functions. 68	-	-	-												\bullet	
Neon Switch Photocell Relay 72		-	-	-												-
Stereo Goes Early American 76				\bullet						\bullet				\bullet		
Potted Preamp 80				\bullet						-						\bullet
New Slant on Receivers............ 82	-			-		-	-		-							\bullet
Special Section on 1964 Kits 83	-			-		-	-		-	-	-		-	-		
Manure Battery 90	-	-	-												\bullet	
Astro-Ears for DX'ing 94	\bullet	-	-												\bullet	
Fly the R/C Champ 97	-						-									\bullet
Speed Control for Power Tools...... 102			-	-												\bullet
Passive Booster for DX-ing 106			-	\bullet					-					-		\bullet
Maid for Your (Light) Meter 107				\bullet											-	\bullet
DX Offbeat 110	-								-							
Field Day for Hams 112	\bullet					-										
Crystal Ball 116	-								\bullet							
Ham License Fees/Taxes 119	\bullet					-	-	-								

WHITE'S RADIO LOG, Vol. 41, No. 1-128

DEPARTMENTS - Positive Feedback 6 - Bookmark 16 - New Products 22 Ask Me Another 35 - Free Literature 122

These men are getting practical training in NEW Shop-Labs of
 ELECTRONICS

ON REAL

Motors-Generators -Switchboards-Controls-Modern AppliancesAutomatic Electronic Control Units

THLEVISION

COYNE

in Chicago - prepare for today's TOP OPPORTUNITY FIELD. Train on real full-size equipment at COYNE where thousands of successful men have trained for over 60 years - largeat, oldest, best equipped school of its kind. Professional and experienced instructors show you how, then do practical jobs yourself. No previous experience or advanced education needed. Employment Service to Graduates. Start now - pay later-Liberal Finance and Pay. ment Plans. Part-timeemployment help for students. GET FREE BOOK - "Your Opportunities in Electronics" which describes all training offered in ELECTRICITY and TELEVISION-RADIO ELECTRONICS-no obligation; NO SALESMAN WILL VISIT.
Coyne Electrical School, 1501 W. Congress Parkway Charteres Mot For Profit - Chicago 7, Dept. 14-8

MAIL COUPON 9amente To

ON REAL
TV ReceiversBlack and White and Color AM-FM and Auto Radios Transistors Printed Circuits Test Equipment I

COYNE ELECTRICAL SCHOOL Depl. 14-B - New Coyne Building 1501 W. Congress Pkwy., Chicogo 7, Iff. Send BIG FREE book and detoils of all the sraining you offer.

COYNE offers TELEMSIORTV RADIO ${ }^{-6 O}$ Training in

 Spare Time AT HOME

-PLUS Two Weeks Personal Training in our Chicago Shop-Labs-FREE of any extra Tuition!

Coyne-and only Coyne-can make you such a sensational offer. No increase in cost of home training, but as soon as you graduate you are qualified to spend two weeks in Chicago, working on actual projects, getting persocal instruction-without one cent of extra tuition. Like getting a post-graduate course free. This offer may be withdrawn at any time, but those who inquire about Coyne's home training now will be guaranteed two weeks of shop training at Coyne's expense for resident tuition. Send name for FREE BOOK.

Now, you can quit wishing you had a profitable Radio-TV Service Business of your own. Now, you can quit dreaming about a big pay job in Television-and do samething to make your dreams come true. Start your basic training at home in spare time. We train you to do the work, and khow you how to get the work to do "even while you are learning. No costly "put together" kits to pay for. Lowest tuition-low monthly payments. Free employment service to graduates. Send name for all facts. No salesman will call.

B. W. COOKE, Prasident

ELECTAMCAL SCMOOL

Chartered as ar Educational Institution Not For Profit The lareral, aldosi, cest moulpped raident sehool of its kind. Founded 1899, 1501 W. Congress Parkway, Dept. 14-ns Chicago 7, III.

Send Name for FREE BOOK. No salesman will call

Mr. B, W. Cooke, Pres.

HOME TRAINING DIVISION, Dept. 14-H9 1501 W.Congress Parkway,Chicago7,ill. Please mail free book and offer of two weeks personal training in Chicago without extra tuition for home study graduates. Explain
low monthly payments. low monthly payments.

Address.
city 4

SAVE OVER \$150. BUILD YOUR OWN CUSTOM 23" TV SET

Designed for all types of $\mathrm{Hi}-\mathrm{FI}$ and Custom installa-tions-walls, bookcases, cabinets. Precision engineered in kit form, which you can assemble in less than $\mathbf{3 0}$ hours. Exclusive circuit layout for simplificathon and ease in construction. Large diagrams illustrate each wiring step clearly.
 The Arkay 14 T 23 features: Ulira Ilnear sweep circuits Special low noise tubes Vertical chassis
 Vertical retraced blanking Refiex audio I.F. amplifier for true FM sound
 Automatic gain contral circuips Mast odvanced furret tuner 6 Microvalt sensitivity

4 Megacycle picture bandwidth
Enjoy the thrill of construeting your own TV set ond sove over $\$ 150$, while learning the basic principles of TV. Cost only $\$ 79.95^{\text {* }}$ f.o.b. Brooklyn. * Less picture fube. for full information write:

ARKAY International, Inc.

2372 Linden Blvd. Brooklyn 8, N. Y.

MATHEMATICS ELECTRONICS

These great new courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering.

You will have to see the lessons to appreciate them!
YOU SIGN NO CONTRACTS-you pay only AFTER you have completed each Lesson of your course. if you aren't satisfied you don't poy, and there are no strings attached.
Write today for your outline of courses. You have nothing to lose, and everything to gain!

The INDIANA Home Study Institute Eastern Div.
64 Hemenway Road
Framingham, Mass.

TRANSISTOR IGNITION

ThRTSTHRE

KITS-COMPLETE kit of PARTS to build WARD circuit in February 1962 Science and Mechanics. Includes: TRANSFIRE decal. 2 transistors, 2 Zener diodes, FINNED aluminum HEAT SINK, ignition coil, leads, ballasts, and small parts. EVERYTHING NEEDED for a PROFESSIONAL job-at net prices.
T-K×2 with $250: 1$ coil for 30 kv output. . $\$ 34.95$ TS-KX2 with $400: 1$ coil for 40 kv output. . $\$ 36.95$ 250:1 coil for Ward circuit. . $\$ \mathbf{8 . 9 5}$ 400:1 coil-High efficiency. $\$ 11.95$ add postage and insurance for a lbe. \$S depasitit with c.o.D.

FULL LINE of PARTS and WIRED CONVERSIONS for car, trucks, boats, etc. at LOWEST PRICES.

Write for llsts. Detaler Inquiries Invited.
palmer electronics laboratories, inc.
Dept. RT-41 CARLISLE, MASS. 617-AL 6-2626

FEBRUARY-MARCH 1964

EXPERIMENTER

JULIAN M, SIENKIEWICZ	Edifor
JOSEPH D'AMATO	Art Editor
SID GREIFF	Art birector
ANTHONY MACCARRONE	Alsociate Art Director
ALBERT DE QUERQUIS	Art Associale
ERNST J. LANZENDORFER	Art Associate
P. D. URBAIN	Produetion Editor
MARIANNE SULLIVAN	Production Assistant
LEONARD F. PINTO	Production Director
AARON DANIELS	Adverfising Director
CARL BARTEE	Adoertising Produetion Manager
STEWART S. JURIST	Circulation Promotion Manager

President and Publisher
B. G. DAVIS

Eseculire Vice President and Assistant Publisher JOEL DAVIS

Fice President and Editarial Director HERB LEAVY

Corer Art Director
FRANK A. TAGGART
Managing Editor, SdM Hendbooks
JOSEPH DAFFRON

RADIO-TV EXPERIMENTER, VoI. 16, No. 1 , is published bi-monthly by SCIENCE \& MECHANICS PUBLISHING CO., a subsidiary of Dovis Publications. Inc. Editorial, business and subscription offices: 505 Park Ave., New York, N. Y. 10022 . One year subscription 1 six issuesl: $\$ 3$ domestic, $\$ 4$ Ioreign. Adverilsing offices: New York, 505 Park Ave., Pl-2.6200, Chicago: 520 N. Michigon Ave., 527.0330^{\prime}, Los Angeles: 6363 Wilshire Blyd., 653-5037. Application for second-closs postage rates is pending at Now York, N. Y., and at additional mailing offices. Copyright 1963 by Science \& Mechanics Publishing Co.

INCLUDING Toasters, Irons, Broilers, Heating Pads, Clocks, Fans, Vacuum Cleaners, Refrigerators, Switches, Thermostats, etc.

CHECK ALL ELECTRIC LINES TEST ALL TV TUBES

The Model 163

Measures A.C. and D.C. voltages, 0 to 300 volts; A.C. and D.C. current, 0 to 15 amperes; indicates continuity to 100,000 ohms.

The ranges specified above are sufficient to test all Home Appliances without exception and the vast majority of Industrial Appliances and Utilities.

The Model 163

Will measure the current consumption of any home electrical appliance without the necessity of breaking any of the wires and while the unit is in operation. You simply insert the plug of the appliance into a special socket on the front panel of Model 163, plug the line cord of the Model 163 into the electric line outlet, and read the current consumption in amperes direct on the meter. This is a feature not included in many ampere testers selling from $\$ 25.00$ to $\$ 100.00$.
Testing TV tubes with Model 163
Please note Model 163 will not test the quality of the tube (an emission tester is required for that púrpose) but Model 163 will test all tubes used in your TV set, including picture tubes, for open fila. ments, burned out tubes, etc.
Testing electric lines and outlets
The Model 163 will measure the voltage of any electrical line, outlet or socket. Most lines vary be. tween 110 volts and 125 volts depending upon power line load. Some lines are 220 volts (actually vary between 208 volts and 240 volts). Model 163 will accurately measure all such lines. A.C. or D.C. Motors

The model 163 will test all motors-single phase, multi-phase, universal, squirrel cage. induction; in fact every type from fractional H.P. to 2 H.P.

Meter movement

The Model 163 employs a rugged, accurate, highly damped meter movement with sealed air. damping chamber. Because the meter is of the A.C. type, rectification of current is not required, greatly reducing the possibility of ever damaging the meter or its associated components.

Test leads

Model 163 includes both a prod type lead and an alligator clip lead allowing maximum flexibility. Operating procedure book

The 36-page manual provided with Model 163 is practically a condensed course in electricity. In addition to detailed step-by.step procedure for using Model 153, the manual explains in easy-to-under. stand language what electricity is, discusses current voltage and wattage, and includes many, many simplified explanations usually included only in costly correspondence courses.

Guarantee

Model 163 is guaranteed for one year.
Model 163 comes complete
with all test teads and
operating instructional
manual. manual. Ready to use. Only..

Try it for 10 days before you buy. ir If completely satisfied then send $\$ 3.00$ and pay the balance at the rate of $\$ 3.00$ per month until the total price of $\$ 9.85$ (plus small P.P. and budget charge) is paid. If not completely satisfied, return to us, no explanation necessary.

ACCURATE INSTRUMENT CO., INC.

Dept. D-310 911 Faile St., Bronx 59, N. Y.
Please rush me one Model 163. If satisfactory I agree to pay $\$ 3.00$ within 10 days and balance at rate of $\$ 3.00$ per month until total price of $\$ 9.85$ (plus small P.P. and budget charge) is paid. If not satisfactory. I may return for cancellation of account.
Name
Address
City

- There's BIG MONEY to be Made In COLOR TELEVISION!

 due to shortage of trained menGet into fast-growing field! Learn COLOR TV servicing at home in spare time. Many carn cash while training! Move ahead to a better job, a business of your own!
Get 20 Valuable kits to Build 21" IV Set and Test Instruments!
Become expert the fast, easy way . . . by working on actual TV problems. Your training includes 20 valuable kits of parts and tools, yours to keep. Build a complete 21° TV set, tube tester, and electronic voltmeter as part of your training.

HERE'S HOW TO GET STARTED: MAIL COUPON TODAY FOR

FREE BOOKIET!

Commercial

Trades Instifute
1400 Greenleof Ave., Chicago, Illinols 60626
Dept. T-3 Rush my FREE booklet (without cost or obligation) on C.T.1 training for job opportunities in television-electronics-including COLOR TV servicing.
name
ADORESS

ciry \qquad TONE _STATE

DOUBLE

 BOTM GIFTS FR

WORLD FAMOUS POLY
INFRA-RED PHOTO DE. PAK KITS-RRAND NEW PAR TECTOR transilucer DE- $\$ 1 \mid \square 10$ 30-MC PHILCO MADT 3-40-WATT POWER S1 6 RCA 2NAOB TRANSISHOFF OUADUT. PRTPELIT SILICON SUN CELL CK722, $2 N 107$ EqUAKA.
15
NPANSISTORS. 2N35 2N170 equalx.
 TORS 2N1321, RRANSIS.
 trangistors 5 GE

$$
\begin{aligned}
& 5 \text { GE 2NIO7 } \\
& \text { SOTOTSANSISTOR TRANS } \\
& \text { FORMERS. }
\end{aligned}
$$

$$
\begin{aligned}
& 40 \text { 10\% PNECIS1ON } \\
& \text { sistore, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sistors } \\
& \text { 4 Time ofilars, } 1.2 \text { min } \\
& \text { crosecond. encapsulated }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TIME OELYS, } 1.2 \text { mil } \\
& \text { crosecond encapsulated. } \\
& \text { TROLYANSISTOR ELEC. } \\
& \text { TROLICS. ANSt. valuek }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TROLYTICS, ANst, value } \\
& \text { GO SOCKETS, plugs. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { G0 SOCKETS, plugs, re- } \\
& \text { ceptacles Power, audio. } \\
& 35 \text { Two WATTES, Allen } \\
& \text { Bradley, } 5 \text { rt toan. }
\end{aligned}
$$

$$
\begin{aligned}
& 10 \text { RCA PLG-n-JACK sete } \\
& \text { for phono tunerf. } \\
& \text { SO TEMINAL STRIPS, i }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PRise tranklstors. } \\
& 10 \text { volume conticis } \\
& 10 \text { mer. swhtch } 100 .
\end{aligned}
$$

$$
\begin{aligned}
& 10 \text { VOLUME CONTROLS } \\
& \text { 10 I MER, SWIHCh loo. } \\
& 50 \text { ONE WATTERS. INC, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Allen Bradley: } 50 \text { too } \\
& \text { - SUN BATEERIES } \\
& \text { ith IIte senslive. }
\end{aligned}
$$

reflector-n-filte

INCI.UDE POSTAGF.
 mber/ose. pnp. TO22 - $\begin{aligned} & 2-2 \text {. A MP SCR } \\ & \text { control rectiners }\end{aligned}$ 5 2NIS5 TYPE POWER TRANSISTORS, TO3 case 25 AMP SWITCHING a RAYTHEON CK721 PNA transistora. alum case 2-35.WATT TRANSIS TORS, 2 N 1434 . pnp. $10{ }^{750} \mathrm{MIL} 400 \mathrm{~V}$ SILI. CON rectithere, top hiat. 100 HALF WATTERS, 5%
too. 100 tshm to 1 meg. 40 DISC CAPACITORS 27 mmi to .0 .5 mf to 3 KV 30 POWER RESISTORS, to sow. 10 24K ohms. - 10 TRANSISTOR SOCK. ETS for PMP and nphns. ERS, diser etc. to .OSm 60 TURULAR CONDENS. ERS, 000% to 1 MIT ... GO SUBMINI CONDENS 50 RADIO.П.TV KNOBS hast shapew, colors. ete. 50 COILS-m-CHOKES If ore, ir, peakling, etc. SO MICA CONDENSERS. 60 HI-L HESISTUKS 1. 2W 10 \% mex.. Pri 100 PARTS SURPRISE. WOHTh STOO RAYTHON CKTiz 10 RAYTHEON CK722
trankisiors tranisis:
2O-WATT TORS: Prap: 2 N 1320 , stud IS UPRIGHT SILICON dlonden Raythenn. iN4.3-4 150.WATT TRANSISTOR,
sllicon. stud. 2N:01\%. E: WEIGHT PFK PAK 1 1b.
P. O. BOX 942 x So. Lynnfield, Mass.

posirive feedoack

By Julian M. Sienkiewicz
Editor

RADIO-TV EXPERIMENTER, beginning with this issue, is now a bi-monthly magazine that will be coming your way six times a year. Considering that this magazine started out as an annual publication, and not too annual at that, its growth is a bit surprising. Also, the regular readers of Radio-TV Experimenter would notice that the magazine has a new Editor.

One of the diseases that afflicts new Editors is called changitus. Once they get control of a publication, they want to change everything about the old magazine and come up with an entirely new format. Well, this is one Editor who will not set the publishing world on fire. I liked the old Radio-tv ExPERIMENTER; its articles were top notch, construction projects were many and good, and it gave a healthy dose of theory

You may well ask, "What will be new in Radio-TV Experimenter, and if nothing, who needs you?" I can answer that question by saying that electronics is a growing field, that is creeping into practically every facet of our lives. The transistor, that was big news several years ago has yielded to the tunnel diode, silicon controlled semiconductors, lasers and more to come. In order to keep this magazine up-to-the-minute with our fast moving world, changes and additions have to be made each issue. It is true these changes will be small ones, but if we let them escape us for any length of time, we will be bypassed by the other publications in the field.
What's New in This Issue. First, I suggest you thumb through the issue before you read any more of my chit chat. See for yourself! The issue looks a lot like the last issue but there are some new ideas to be seen.

First, there is this column, which will be in every issue hereafter and placed up front at approximately the same position. If you enjoy reading this chit chat and getting the low down on what's new in electronics, just

Pick the course for your career...

Electronics Technology

A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a lst Class FCC License.

First Class FCC License

If you want a lst class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

Electronic Communications

Mobile Radio, Microwave and 2nd Class FCC Preparation are justa few of the topics covered in this "compact" program . . . Carrier Telephony too, if you so desire.

Broadcast Engineering

Here's an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

Get A Commercial FCC License ...Or Your Money Back!

A Commercial FCC License is proof of electronics skill and knowledge. Many top jobs require it . . . every employer understands its significance. In your possession, an FCC Commercial Ticket stamps you as a man who knows and understands electronics theory ... a man who's ready for the high-paid, more challenging positions.
Cleveland Institute home study is far and away the quickest, most economical way to prepare for the FCC License examination. And that's why we can make this exclusive statement:

The training programs described above will prepare you for the FCC License specified. Should you fail to pass the FCC examination after completing the course, we will refund all tuition payments. You get an FCC License. . . or your money back!
Before you turn this page, select the program that fits your career objective. Then, mark your selection on the

Cleveland Institute of Electronics
 1776 E. 17th Street, Dept. Ex-5
 Cleveland 14, Ohio

coupon below and mail it to us today. We'll send you ... without obligation ... complete details on our effective Cleveland Institute home study. Act NOW . . . and insure your future in electronics.

Mail Coupon TODAY For FREE Catalog

Clevaland Institute of Electronice 1776 E. 17th St., Dept. EX.S

 Cleveland 14, OhioPlease send FREE Carcer Informa. tion prepared to belp me get ahead in Electronics, without further obligation. CHECK AREA OF MOST INTEREST-Firat Class FCC License
Electronic Communicatione
other

[^0]

- =Quality made rule with manual Illustrated self teaching course..... Combinat lon $\$ 4.95$ ppd. Alsynco rte.3. 171 8. Maln St., Nntick, Mabs.

12 WATT TRANSISTOR AMPLIFIER

A beautifully engineered 12 watt Transistor Amplifier for music systems, public address, paging, and many other uses. Complete with husky A.C. power supply. Uses two power transistors with thermister bias protection. Input impedance 16 ohms. Output impedance 200 ohm line. Two volis across 16 ohm input drives to full 12 watt output. Room for additional stages if desired to increase gain. These amplifiers built to run continuous duty. Chassis $91 / 4^{\prime \prime}$ $L \times 23 / 4^{\prime \prime} \mathrm{W} \times 47 \mathrm{~s}^{\prime \prime}$ high. New original manufacture packing. Shipping waight 12 lbs .

$\$ 995$ Plus Postage

TRANSISTOR BROADCASTER

A unique 2 Transistor Phono Oscillator which plays through any broadcast band. Radio will operate mike or phono pickup. Originally designed to add Stereo to regular monaural sys. tem and priced at $\$ 16.75$ each.

SPECIAL
CLOSE-OUT
PRICE ONLY
$\$ 2 \begin{array}{ll}50 & \text { Plus Postage } \\ \text { EACH } & \text { Handling }\end{array}$
 CAPITOL COMMODITIES CO. INC.

4757 N. Ravenswood Ave., Chicago 40, Illinois PHONES: LO 1-3355

Positive Feedback

thumb to the first few pages in the following issues and there I will be.

There are two new columns in the front part of the issue. Bookmark is a book review column that is aimed at the man in electronics, or wanting "in." The unusual scope of the column is described fully in the column itself. I suggest you read it. The other new column is New Products, which in itself is not really new. Many magazines have departments just like it and I am sure they enjoy the same name. So what is new about this column? It is not the column but the products that this column singles out. You can rely on the editorial staff to weed out the chaff and serve up only the best in new products (and maybe a few oldies that are perennials).
White's Radio Log. Beginning with this issue the short-wave coverage will receive a boost with the new expanded short-wave section in White's. Turn to the first page of the $L o g$ and learn about this valuable addition to Radio-TV Experimenter.
FM Pocket Mike. Last summer the FCC decided to toss aside its pince-nez and let the Part 15 section of Rules allow unlicensed

transmitters in the flea-watt range to operate on the FM broadcasting band. With this bit of news still hot, a construction assignment was made almost at once and the result -you can now build your own pocket-size FM transmitter. Turn to page 41 for the details. A nice four-color photo of the device is shown on this month's cover. As I

BUILD 20 RADIO CIRCUITS AT HOME

with the Deluxe PROGRESSIVE RADIO "EDU-KIT" ${ }^{(8)}$
A Practical Home Radio Course
Now includes * 12 RECEIVERS * 3 TRANSMITTERS * SQ. WAVE GENERATOR - SIGNAL TRACER * AMPLIFIER
* SIGNAL INJECTOR
+ CODE OSCILLATOR
* No Knowledge of Radio Necessary
\star No Additional Parts or Tools Needed
\star EXCELLENT BACKGROUND FOR TV
\star School Inquiries Invited
* Sold In 79 Countries

YOU DON'T HAVE TO SPEND

 HUNDREDS OF DOLLARS FOR A RADIO COURSEThe "EEdu-Kit"' offertyou an outstanding PRACTICAL HOME RADIO COURSE at Hee of the most modern methods of home trainingadfo \& Electronics Technicians. making
 In a professionat how to bultd radios, using regular schematics; how to wire and solder
punched metat chasiser how to service radios. You whll work with the standard type of Pou wil learn the basic principies of radlovelopment of Printed circult chassis.
RF and AF amplifiers and osclilators. detectors, rect ifiers, testruct. study and worin with RF and AF amplifiurs and osclllators. detectors, recthiers, test equipment. You work with trouble shooting, uting the Progressive Signal Tracer, Progrestive Signal injector, proing Instructional material. for the Novice, Technician wave Generator and the accompanyYou will receive training for the Novice, Technician and General Classes of F.C.C. Radio
Amatour Llcentes. You wlll bulld Receiver, Transmitter, Square Wave Generator, Code Amateur Llcentes. You wlll build Receiver, Transmitter, Square wave Generator, Code
OAcillator, Signal Tracer and signal Injector circuits, and learn how to operate them. You
wll! receive an Absolutely no previou* knowledge of radio or selence land required. The "aEdu. kit'" the product of many years of teaching and engineerlng experience. The "Edu-Kit"" provide you with a basic education in Electronics and Radio, worth many times the low

THE KIT FOR EVERYONE

You do not need the slightest background In radio or sclence. Whether you are interested in Padio \& Electronics because you busincess or iob with a future, you willind the "Edu-Kit" a worth-while Investment,
Many thousands of individuals of ali

PROGRESSIVE TEACHING METHOD

 Klt" uses the modern educational primclple of "Learn by Doing."Therefore you construct. tearn schematics, study theory, Practlice trouble shooting-all in a closely bntegrated pro You begin by examining the various radio Darts of the "Edu-Kit. " Yockg then in radio. function, theory and wiring of these parts. Thar you butid simple sado. With thisn first tet you whil enjoy ilstening to reqular broadcast stations, learn theory, practice testing and troublestioot ise. Then you buld more advanced radio, dearn more advanced theory and yechnigules, Gradually, in a prosressive manner, and at your own rate. you will profegstonal Radlo Techniclan.
Tracer, Square Wave Genemator and SIgnal Recelver, Transmitter, Code Oeclliator, Signal Tracer, Square Wave Generator and SIgnal Injector circuita. These are not unprofessional whing end soldering on metal ehassis. plus the new method of radio construction known

THE "EDU-KIT" IS COMPLETE

You will receive all parts and instructions necessary to build twenty different radio and electronics circults, each gutranteed to operate. Our Kits contatn tubes, tube sockets, varithe, electrotytic, mica, ceramic and paper delectric condensers, resistore, tie itrips. telenium rectufiers, coils, volume controle and awitches man In additlon, you receive Printed circult materlals, including Printed circuit chassis, protessional electicic soldering Iron, and a seltpowered Dynamic padio and Electronics Tester. The "Educht" alsu Includes Code instructions and the Progreselve Code oscillator. will also recelve iessons for servicing with the Progressive Signal Tracer and the Progres sive Stgnal Inlector, a High Fidelity Gulde and a Quiz Book. You recejve Membership in Radio-rv ciub, Free Consultation Scrvice, Certificate of Merlt and Discount Privileges.
vou receive ail parts, tools. Instructions, etc. Everything is yours to keep.
ages and bachgrounds have successtully used the "Edu-kte" in mare thanccesstully tries of the world. The "Edu-kit", has been carefully destgned, step by step. so that allows you to teach yourself at your own
rate. No instructor is necessary,
You receive all parts, tools. Instructions, etc. Everything is yours to keep.

UNCONDITIONAL MONEY-BACK GUARANTEE

ORDER DIRECT FROM AD-RECEIVE FREE BONUS RESISTOR AND CONDENSER KITS WORTH $\$ 7$

© Send "Edu-kit" postpaid. I enclose full payment of \$26.95.

S Send "Edu-Kit" C.O.D. I will pay $\$ 26.95$ plus postage.

- Rush me FREE deseriptive literature concerning "Edu-kit."

Name..
Address

PROGRESSIVE "EDU-KITS" INC.
1186 Broadway, Dept. 516 NN, Hewleft, N, Y.

BURSTEIN-APPLEBEE CO.

Dept. RY, 1012 McGee St., Kansas City 6, Me. SEND
1 FREE 1964 B-A Catalog

\qquad FREE State \qquad

ELECTROSTATIC GENERATORS

 NOW _ 4 Models - 150,000 250,000 and 400,000 VOLTS pLUS NEW SUB.MINIATURE

Complete kits
150.000 VOLT MODEL..... $\$ 27.95$ PP. 250,000 VOLT MODEL..... 32.95 PP.

Also Plastic Materials for:
 - MiNLATURE TESLA COIL........ 21.00 - WIMSHURST STATIC MACH..... 20.00 - TURBO GENERATOR KIT - 4.25 - OPAQUE PlROJECTOR .. 8.50 - EULSUN CLOUD CHAMBER. GENERATOR9.95 a 9.95 - Vacuum chamber Kit..9.00\& 11.50 FOREST PRODUCTS, INC.
Dept. RT-41
145 Portland Stree
Cambridge. Massachusetts

zi = $=$ Cofrog Kiz OF THE WORLD'S FINEST Siz ELECTRONIC GOV'T SURPLUS BARGAINS

HUNDREDS OF TOP QUALITY ITEMS-Recelvers. Transmitters, Microphones. Inverters. Power Supplies, Meters, Phones, Antemmas, indicators, Filiers. Transformers, Amplltiers. Headsets, Converters, Control Moxes, Dinamotors, Test Equipment, Motors, Hlowers, Cable, Keyers. Chokes. Hanusets, Swltches, etc., etc.
Send for FILEE Catalog-Dept. 24.

FAIB RADIO SALES 2133 ELIDA RD. BOX 1105 • LIMA, OHIO

Positive Feedback

write this, it is not known whether RADIOTV EXPERIMENTER scooped the other electronics magazines or not. But you can be sure we tried.
Sylvania and General Electric have realized the gigantic buying power of the electronics experimenter and hobbyist, and have come up with some new ideas. Sylvania has a

Sylvania
brand new Photoconductive Kit which contains three photoconductors, cell bracket, an AC/DC relay, resistor and a 52 -page booklet on interesting circuits using these parts. Priced at $\$ 9.95$, the kit is available through Sylvania distributors or direct from the fac-

A NEW WORLD OF OPPORTUNITY AWAITS YOU WITH N.T.S. ALL-PHASE HOME TRAINING IN ELECTRONICS

You can install and maintain elec. tronic circuitry in mis siles and rochets specialize in micro-waves, radar and sonar.

You can succeed in TV-Radio Communications... prepare for F.C.C. License, service advanced satellites for industry and detense.

You can service and repair the elec. tronis "brains" of Industry - com. puters, data processing. and other automation equipment.

You can become a highly-paid TV. Radio Technician, an electronics field engineer, or succeed in your own sales \& service business.

The N.T.S. Master Course enables you to do more, earn more in ELECTRONICS•TELEVISION•RADIO

Yet N.T.S. Training costs no more than other courses far less complete

There's a good reason why N.T.S. Master-Training opens a wide new world of opportunity for you in Electronics, Television, Radio.
Everything you learn, from start to finish, can be applied directly to all phases of the Electronics Industry.
As a result, the N.T.S. Trained Technician can move ahead faster, in any direction - from TV.Servicing to Radio Communications to SpaceMissile Electronics and Automation for industry and defense. You can go wherever pay is highest and opportunity unlimited.
Electronic circuitry, for example, is one of science's miracles that is basic to the entire field of Electronics. It is used in satellites, computers and space capsules as well as in today's television sets and high fidelity equipment. N.T.S. shows you how to service and repair electronic circuitry for all electronic applications.

YOU WORK ON MANY PRACTICAL JOB PROJECTS.
You build a short-wave, long-wave superhet recelver, plus a largescreen television set from the ground up. N.T.S. tralning kits contain all the parts you need, at no extra cost. (See box at right.) You also receive a professional Multitester to use during training and on the job. ONE LOW TUITION. You need training related to all phases of Elec. tronics. Industry demands it. Only N.T.S. provides it... in ONE Master Course at ONE low tultion.

RESIDENT TRAINING AT LOS ANGELES

If you wish to take your Electronics-TV.Radio training in our famous Resident School in Los Angeles - the oldest and largest school of its kind in the world write for special Resident School catalog and information, or check coupon.

NATIONAL SH20 SCH0OLS
Accrediled
Member
world wide training since 1905 B - ${ }^{\mathrm{N}}$ NH.S.C.

YOU ENROLL BY MAIL AND SAVE MONEY, No salesmen means lower costs for us, lower tuition for you.
START NOW. A whole new world of opportunity awaits the men with Electronic Home.Training trom National Technical Schools - a recognized leader in technical training for 58 years.

NO OBLIGATION.
NO SALESMAN WILL CALL

NATIONAL SCHOOLS
 WORLD-WIDE TRAINING SINCE 1905

- National Technical Schools, Dept. RKK-14 4000 S. Figueroa Si., Los Angeles 37, Calif.
- Please Rush FREE Electrohics-TV-Radio "Opportunity" - Book and Actual Lesson. No Salesman Will Call.

Name Age \qquad
Address
City
Zone State
\square Check if interested ONLY in Resident Training at L.A. High school home study courses also offered. Check for free catalog.

4000 So Frigueroa St., Los Angeles 37, Calif

GIANTGROYE SALE!	
9 TRANSISTOR WALKIE.TALKIE (Famous Make) reg: $\$ 35.00$ Incl: Leather Case, earphones, batteries. Chan. 9 SALE SPECIAL!! Two walkie-talkies as above COMPLETE	$\begin{aligned} & \$ 23.99 \\ & \$ 46.99 \end{aligned}$
- AUTO BURGLAR ALARM - Protect your car 24 hours a day, Hooks up easily to all 6 \& 12 volt cars. . SALE	2.99
15.PC NOISE SUPPRESSOR KIT (Model SN-3) Includes Generator Noise Suppressor, Feed-thrus, other sup.	4.99
- GROUND PLANE ANTENNA SALE (discontinued model) Solid radials, accepts PL-259, all sales final SALE	
- CB RADIO MOBILE HANDBOOK (Reg \$2.95).SPECIAL	\$.99
REM!NGTON-RAND COMPUTOR CHASSIS (used, good condx)	\$ 1.49
- 4 TRANSISTOR P.P. AUDIO AMP w/schematic.SALE	\$ 3.99
- MULTI-TAP TUBE TESTER TRANSFORMERS.SPECIAL	\$. 69
- 6V and 12V VIbrator TRANSFORMER (Sec. 285V © 70 MA)	$\$ 1.49$
- 60W P.P. OUTPUT TRANSFORMER (Matches 6L6's etc) SALE	\$ 4.99
- TURNER 254C DESK STANO MICROPHONE (\$23.50 list) SALE	\$10.99
- 6CW4 NUVISTOR TUBES (Special deal: 3 for $\$ 4.79$) SALE	\$ 1.69
- 8 INCH SPEAKER \& WAlL baffle.......... SALE	\$ 3.99
- 4 INCH PM SPEAKER................... SPECIAL	\$ 79
- 5 INCH PM SPEAKER. SPECIAL	\$. 99

- SEND POST CARD FOR LATEST CATALOG

GROVE ELECTRONIC SUPPLY COMPANY
4109 W. Belmont Ave. Chicago, III. 60641

When Answering
Advertisements Say
You Saw It In
Radio-TV Experimenter

SUPER SURPLUS SPECIALS

All items genuine unused government surplus, (or removed from unused equipment), all items sent POSTPAID (unless noted otherwise) 6 AL5 or more of inst price Primary 110 volts, 60 cycles. Sec$6 A 05 \ldots 40 ¢ 12 A \cup 7 \ldots 45 t \quad 6.3$ volts @ 2.75 amps. 2500 volts 6.56 ... 554

50 ASSORTED RESISTORS $\$ 1.00$
1/2 W. to 2 W., many 5%.
50 ASSORTED CONUENSERS $\$ 1.00$
micas, molded tubulars.
EXPERIMENTER'S DREAM $\$ 2.00$
over 100 valuable assorted parts.
Minimum postpaid otc
$\$ 5.00$. Orders under $\$ 5.00$ please add $50 c$.
Cenfury Electronics P.O. Box 327 Hicksville, N. Y,

Positive Feedback

tory. Just write to Sylvania, Dept. PCK-10, 1025 Westminister Drive, Williamsport, Pa. and include $50 ¢$ extra for postage and handling.

General Electric has come up with an "Experimenter Line" of 15 different types of electronic control devices that are available at their authorized distributors of electronic components. With each individuallypackaged control device come schematic diagrans for building suggested electronic gadgets ranging from burglar alarms to slave photoflash circuits. Where necessary, hardware items are included in the package. Next time you're at your local electronics parts dealer, ask to see the General Electric "Experimenter Line."
Bye-Bye Univac I. The world's first data processing computer, Univac I, Serial No. I, completed its last tabulation for the Bureau of Census, U.S. Department of Commerce, and was formally presented to the Smithsonian Institution. Univac's retirement took

Bureau of Census
place $121 / 2$ years after it first went into operation. Now, I for one, favor the idea of retiring the dusty bones of distant Pharaohs to deep recesses of museums, but Univac l still has a useful life. There are many colleges throughout the land that teach prospective engineers all about computers and the like without having the likes of one on the campus to show the students, or give them the opportunity to work on one. Univac is not that ancient that students could not learn by using it. I wonder if the retirement of Univac I was nothing more than a public relations man's dream come true. The FCC Means Business. Lately, there seems to be an increasing number of press releases from the FCC crossing my desk

Count-down, blast-off, orbital communication! Back of every space-age achievement is the magic of electronics. And back of most electronic applications - in space, in the industrial plant, studio, or laboratory - is the electronics technician. Thousands of technicians have been trained by DeVry Technical Institute since 1931 and back of each man stands the school that has trained him. Yes, DeVry Tech backs him with continuing Employment Service through the years of his career; DeVry backs him with its practical Consultation Service, helping him solve technical problems he may meet, on his job, at any time. All this tops off DeVry's practical training: at home in spare time, or full or part-time in DeVry's modern, well-equipped training centers in Chicago or Toronto. If you're 17-55, find out all that DeVry has to offer you in the exciting field of

YOU'VE NOTHING TO LOSE, YOU'VE MUCH TO GAIN! MAIL COUPON NOW!

DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill., Dept. RTE-1-U
Please give me your two free booklets. "Pocket Guide to Real Earn. ings" and "Electronies in Space Travel"; also include details on how to prepare for a career in Electronics. I am Interested in the following opportunity fields (check one or more):

8 Space \& Missile Electronics

```
Television and Radio
Microwaves
Radar
```

Computer Computers Broadcasting Industrial Electronics Electronic Confrol

[^1]SCIENCE \& MECHANICS / Handbook Division 505 Park Avenue / New York, N. Y. 10022
\square Enclosed is \$ \qquad Please send me the S\&M Handbooks clrcled below. Each volume is $\$ 1$ (includes postage and handling). Please allow four weeks for delivery.

669
671

- Enclosed is \$3. Enter my special 4 Issue subscription to BOATCRAFT, starting with No. 669.

Name \qquad
(Please print)
Address

OR USE COUPON ABOVE

669-BOATCRAFT

Contains a complete knowledge of boating-it is a veritable how-todo almost every. thing guide and idea book, plus a superior libraryreference source of boating information.

671-ENGINE HANDBOOK

A ready reference guide to operation and servicing of various engine types designed for mechanically. minded hobbyists. Contains trouble. shooting charts and numerous repairs suggestions.

Positive Feedback

listing names of CB'ers who are about to lose their licenses as well as $\$ 100$. Almost to the man, each license is being lifted because the CB license holder failed to respond to official notices. I personally believe that if each licensee had answered all citations as soon as they were received explaining that they were sorry for what they did and will not do it again, the FCC would be more than happy to forget about the complaint. However, if you fail to answer their letters (even if you are innocent of the stated charges) you can lose your license and $\$ 100$ to boot. So get on the ball when you get that complaint from the FCC if you want to stay on the air.

One other interesting FCC item is the repeated stand by the Commission on its UHF policy. As it now stands, all TV sets manufactured after April 30, 1964 must be capable of receiving all television broadcast channels (VHF and UHF). The FCC means business and the TV set manufacturers are beginning to believe it.

And just in case you did not read our cover blurb, the FCC is charging a fee for CB and Amateur licenses. A detail story is in this issue. Check the table of contents. WWVH Makes a Change. The National Bureau of Standards' station WWVH in Maui, Hawaii has eliminated the 34 -minute silent VH period at 1900 UT daily. The silent period from 15 to 19 minutes past each hour will be continued. WWVH can be heard on 5,10 and 15 kc .

"Stop saying 'ain't'!"

ELECTROTIC SURPLUS BARGAIIS SAVE UP 10 90\%
 RCA 6032 IMAGE CONVERTER TUBE
 NICKEL CADMIUM BATTERY
 SILICON RECTIFIERS

Combined with sultable op tical systems, this 3 -elec trode tube permits newing of scene with infrared radia tion. Scene to be viewed is imaged by optical oblective upon semi-transparent photo cathode. Spectral resp., S-1 good response up to about 1200A. Max. rating, absolute, grid \#2, $20,000 \vee D C$ or peak AC. grld ${ }^{\text {\# }} 1,2700 \mathrm{VDC}$
 NT-6 WILLARD G-VOLTSTORAGE Rated $2+1$ mp Rated 24 amp. hr.
Appros. dimensions:
 ib. ${ }^{3}$. oz. (plastic ease) Dry-charged.

POTTER \& BRUMFIELD RELAY \# SMSLS SI'DT 8.000 ohm $11 / 16^{\prime \prime \prime}$
dia.
long. Approx, $11 / 16^{\prime \prime}$ ${ }_{1}^{\text {long. Approx. Welght }}$ sealed. Standurd
 sealed. Standurd 7 -pin miniature base $\$ 2.00$

MINOR SWITCH
10-position. 3 -pole with stopper coil and reset coll non-bridsing wiper appror dimensions: 4" long

24 VOLT DC POWER SUPPLY
input: $115 / 440$ volts 60 cycle. single phase. Output: 24 volts D. C. nt 25 amps tapped primary and unit contains $0-30$ volt D. C. meter and 0.30 sonp meter. clreuit breaker. filtered; selenlum, typ rectiter approx. dim: 16 Wide. 18 lons PRICE

OIL CAPACITORS
1 mid .25 .000 V. DC Westinghouse In terteen Type Fl' Sityle 1313854

10 or more, $\$ 35.00$ each. GENERAL ELECTRIC FULL WAVE
BRIOGE GERMANIUM RECTIFIER post input 117 volt AC, output 115 volt DC at 10
 $7_{i=1 / 2}^{\text {mingions: }}$ long weight: $3^{1 / 2}$ PRICE $\$ 9.95$ each

TEST SCOPE-SYNCHROSCOPEPULSE ANALYZER
 D-59/APA-11. Late subsssembly construc tion. Video amplifier is fiat to fatme. Test-scope sswiooth $25-20,000 \mathrm{cy}$. 1 las all normal lest-scope controls. As synchroscope and puise analyzer, aceepts nositite or negative pulses. Video dolay circult permits leading edge of pulse to be seen. Culbrated-dial horizontas shirt measure pnds durations iromilor ures recurrace-oscilator calibrator 6000 pns accurate within 0.4. \%om Bullt-in power supply requires 115 v , 400 cy , 196 watts. External 60 ey power supply may be made to furntsh plus 330 and- 1300 vde and 6.3 vac. In excellent condition, with all 19 tubes, schematic with parts ralues. parts-location pletures. operating linstructions. theory explanation. and maintenance charts. Shipping welght 60 lbs. Used. sood.

RG 58A COAX CABLE
$52 \mathrm{OHM},{ }^{\text {RG }} 100$ 58A ft . length COAX
\$3.95

Bech.
Fechargeable thousands dimes. Alkallne storage batters sintered-blate. fiat voltage curve during aischarge. time. harge for long perscharke rate up to 50 amps. Spiti-proof, may be used in any position. Approx. ${ }^{6-\text { ampere-hour capacity }}$
Dlinensions: $6^{\prime \prime}$ high; $2^{\prime \prime}$ wide: thick. Approx. wi. 6 oz Uses potassium hydroxlde $(30 \%$ Electrolite).

SIGMA EXTRA-SENSITIVE
 Extremely preclse, rugged DC general purpose sensitive relay. lialaneed armature, single-pole, doubleranke of adjustments. D1dimensions: $1^{3 / 4}$ Y15/16"

 $111 / 16^{\circ}$ high. Welght $4 \frac{1}{4}$ ozfor $10.00 \mathrm{~s}^{2}: 10000$ coll ohnus Operates 1.0 tha Inc Operates 0.5 ma 10

POWER TRANSFORMER Output: 12. 24, 36 vols Input: 100 volts. 60 cycles. tingle-phase. Steel case is hermetically sealed. $31 / 2{ }^{4}$ \$2.95

DIRECT-READING MAGNETIC COMPASS
card.
compen Falling niagnets, and dial light sall. in 6- or $12-v$. buth. avalnous dial. Migd. by Bendlx-1'loneer. $3 \%_{4}^{\prime \prime} \times 32 / 4$

LORAN RECEIVER AND INDICATOR LORAN REC MODEL DAS
110 volt; 60 cycle. single
frequency rance, 1 band.
irequency range,
4
channel.
sereen,
used in good condition.

used Price

RADIO COMPASS RECEIVER 135/AlRN Frequency 100 to 1750 135/ARAD Price R5A/ARNT Price RSA/ARN Price Control Box C4/AlfNi F'rice Indleator 181A l'rice.

$\$ 17.50$
$\$ 27.50$
$\$ 1$
Vrice\$ 7.50
VARIAC TYPE V20 input 120 volt AC $50 / 60$ cycles output range 0-140 volts. 20 amperes.
PルICF:

TYPE AN/ARN-6 RADIO COMPASS Recelver $18 / 101 / A K N N^{-6}$ 100-1750 ke. in 4 bands. Excellent condition. Price
Lood Lood As313-8. Excellem Condtion. 1'rice $\$ 27.50$ Indicator ID91B/AllN-6 Fxcellent Condition.
 Control Box C-149A. 1rice
$\$ 9.95$
$\$ 15.00$

MANUAL

Handhook of opersting instruetions, general Instaliation adjustment Dlus 5 Duges

Alsted at maxiinsted at maxiers voltuge ratlings: upproximate forward voltage drop. 1.5
 volts.
1N1446

- 1175
1×1448
$\times 149$
N149
$\mathbf{N} 1450$
1.1150
$\times 145$
1

N 1452
N 1453
1×1453

- 1454
N1455
1×1456
$\begin{array}{r}1 \times 1458 \\ \hline\end{array}$
1×1453
1 $\mathbf{N} 0511^{7}$
1N1463
N1466
1×1467
iN1468

N147t	150	amp.	50 volts	16.50
150	amp.	100 volts	17.00	

X-BAND POWER LEVEL TEST SET.

 Brand new. in original Measures 10 to 30 dbm . $8700-9500 \mathrm{mc}$.

TS-102/AP RANGE CALIBRATOR This crystal controlled pulse generator produces square-topped, 50 -rolt synchronlzing pulse of 8 nilcraseconds at a pri of 400. 800. 1600 or 2000 markar pula of 0 microseconds duration at a prt or inding 10 a puise-echo distunce of 1500 ft . The phase between the marker and sync. pulses is continuously variable from -180 to +180 degrees. PRICE
BCI335 2.CHANNEL FM TRANSCEIVER
 30-39 me. This unit 18 complete with 18 tubes operating from elther 6 or 10
(Selfvolts D.C. (Selfcontained power supply). Crystal control. sensitive supreme circult. Approx. dimensions $11^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$. Approx. 24 lbs. Unit complete with tubes, schematic diagrath and presetilng instructions. Like new. . $\mathbf{\$ 2 5 . 0 0}$
POWERSTAT TYPE 20
Input 120 volt AC, $50 / 80$ cycle output range 0
volis AC 2 maneres. volts $\mathrm{AC}, 2$ a mperes.
l'11CE...... .59 .95 each

$$
\text { POWERSTAT TYPE } 116
$$

Input 120 volts. $50 / 60$ cycle output range 0.140 volls AC, 7.5 amperes PIICE:
400.CYCLE FREQUENCY METER IN PORTABLE METAL

CASE

Manke, 380-400 cps. $100-$ 130 VAC. Nine vibratlng reeds. Prequency increments of 5 eps. Frequency $\underset{\sim}{\text { accuracy }}$ is $+0.3 \%$ at

 $\$ 12.50$ COAX CABLE RG59A/U
fitings. roil completo with coax
fition PRICE

$\$ 2.49$ ea.

All prices FOB Pasadena unless orhermise nored. No COD's.

new Allen hex screwdrivers

0

 NE of the big problems with book reviews in most magazines and newspapers is that not enough space is made available to review all the good books that are published throughout the year. This bookworm finds that the electronics books seem to suffer most from lack of reviews. Many good books are released and not reviewed immediately, hence they will never more be reviewed. Not so in this column. As one bookworm to another, you can expect the best of books to be reviewed in this column no matter when they were published. True, most of the books will be new ones, but a few choice volumes will pop up from time to time.Audio. Two very good soft cover books were published in 1962 by Acoustic Research, Inc. They are Reproduction of Sound by Edgar Villchur $\$ 2.00$) now in its second edition, and High Fidelity Systems by Roy F. Allison ($\$ 1.00$). Villchur's masterpiece begins with a lay description on the

theory of sound and how this ties in with high fidelity standards. Then the author takes you on a guided tour of sound reproducing systems. You get a bookworm's eye view of disc recording, pickups and pickup arms, all amplifier types, loudspeakers and enclosures. You even have an excursion into negative feedback and the importance of

What in the world is going on?

'You're there when it happens... with jusț the touch of the tuning knob on your Heathkit Shortwave Listener's Radio! Enjoy on-the-spot news and sporting events from Tokyo, England, France, Germany, Moscow... anywhere! Tune in fascinating amateur radio broadcasts, or listen to your favorite programs on popular AM stations! Take your pick! You know "what in the world is going on" with a Heathkit SWL radio!

Heathkit Shortwave Listener's Radio ... Fun to build, a top performer!

- Covers standard broadcast and 3 shortwave bands - 550 KC to $30 \mathrm{MC} \cdot$ Large, easy-to-read illuminated slide-rule dial © Complete controls for full operating convenience - Built-in speaker and tuning " S " meter - Simple circuit board construction for "beginner" building.
Kit GR-91 . . . I4 lbs. $\$ 39.95$
SPECIFICATIONS-Frequency range: 550 kc to 30 mc in lour bands. Short wave, broadcast bands clearly marked on dial. Controls: General coverage tuning. Bandspread tuning. Antenna trimmer. Bandswitch. Noise Limiter \rightarrow ON/OFF, phone-Standby.CW switch. BFO control. Audio Gain, AC.ON/OFF. Headphone jack, O-multiplier input jack. Power requitements: $105.125 \vee 50 / 60$ cycles $A C, 30$ watts. Dimensions: $12 \% /^{\prime \prime} W \times 51 / 2^{\prime N} \mathrm{H} \times 8 \%{ }^{\prime \prime} \mathrm{D}$.

Heathkit All-Transistor Portable Shortwave Receiver . . . Now Only $\$ 95$

- Deluxe ten-transistor, six-diode circuit - Covers standard broadcast and shortwave bands- 550 KC to 32 MC - Ceramic IF transfilters for fixed aligned band pass • Telescoping $50^{\prime \prime}$ whip antenna-built-in funing meter - Sturdy one-piece metal cabinet with
carrying handle - Operates anywhere with built-in battery power supply.
Kit GC-IA . . 18 lbs. . . Was $\$ 109.95$. . Now . . . $\$ 95.00$ Assembled GCW-IA. . 20 lbs. Was $\$ 193.50 \ldots . . .$.
Now.
$\$ 165.00$
SPECIFICATIONS-IF Frequency: 455 kc . Frequency covernoe: 550 kc 1032 mc in 5 bands with calibrated bandspread scales (oscillator tuning) for $80,40,20,15$ and 10 meter amateur bands and 11 meter citizens band. Selecttivity: 3 kC wide at 6 do down. Sensitivity: 10 uv broadcast band. 2 uv short wave bands for 10 db signal-to noise ratio. Output: 400 milliwatts max. Battery life: uo to 400 hours normal intermittent service using 8 standard size Batterylife: cells. Dimensions: $6 \%{ }^{\circ} \mathrm{H} . \times 12^{* W} \mathrm{~W} . \times 10^{\prime \prime} \mathrm{O}$.

SCIENCE \& MECHANICS / Handbook Dlvislon 505 Park Avenue / New York, N. Y. 10022

] Enclosed is \$ \qquad Please send me, the S\&M Handbooks circled below. Each volume is $\$ 1$ (includes post. age and handing). Please allow four weeks for delivery.

672
673
Name
(Please print)
Address

672-INVESTOR'S GUIDE

A Handbook for the individual investor - whether new or experienced, filled with tips by the experts on how to investigate before you in. vest. Studies of various investing methods.

673-SMALL HOME PLANS

A selection of 10 varied plans for homes of 1,800 sq. feet of finished floor area or lesswithin the means of moderate-income families. Plans and specs available from over 20 architects.

Bookmark

room environment. Villchur's book is the kind of reading material one should have before and after one buys a high fidelity system.

Allison's text on High Fidelity.Systems is aimed at the more timid audiophile who is apt to be a bit more flustered than others once the chit-chat gets technical. It tells the hi-fi system owner how to hookup his components, giving installation tips and a neat little chapter titled "In Case of Difficulty." The low purchase price makes this soft cover a real buy.

Both Reproduction of Sound and High Fidelity Systems are available postpaid from Acoustic Research, Inc., 24 Thorndike Street, Cambridge 41, Massachusetts.

For boys only. If you have a youngster beginning to nose his way through books on electronic subjects, there are two Rider publications he should be reading. Experimental Electricity for Boys by Willard Doan (\$3.45) and Experimental Electronics for Young People by Harvey Pollack \$3.45).

In the Electricity hard cover volume, youngsters between the ages of 12 to 16 are introduced to the mysteries of magnetism and electricity in a dramatic style yet with complete accuracy. The Electronics hard cover text is authored by one of America's leading science high school teachers. In his text, Mr. Pollack offers 49 experiments that are highly organized and logically presented to take the young experimenter from the simple to the more difficult in easy steps. The final group of experiments includes instructions for building an audio amplifier and a two-transistor radio receiver.
If you can't pick up a copy of these basic books at your local book store, send a note

GET READY FOR THE SPACE and SCIENCE ERA! SEE SATELLITES, MOON ROCKETS CLOSE-UP Q. MMAMG ScIENC: BUY araw strive ormant

AUTOMATICALLY SHOWS TIME, TIDES, POSITION OF SUN, MOON, STARS NEW SPILHAUS
SPACE CLOCK

19 DIFFERENT READ. INGS AT A GLANCE

Startling scientific achievement, yet completely practical and functional. Designed for the space age by world renowned acientist, Dr. Athelstan Spilhaus, Dean of Technology, University of Minnesota. Handsome conversation piece-constantly up-to-date encyclopedua of the sky. The Spilhaus Space clock has beautiful fruitwood case and 3 sky-blue dials. Blends with decor of any home, office, club room, classroom, museum, display window, hotel, etc. Large dial shows sun position, dally sun rise and set, moon position. moon rise and set, phase of moon, low and high tide time, current stage of tide, day and month of year. current positlon of stars in sky, time of star rise und star set, relationships of sun, moon and stars, sidereal or star time. Left dial shows local time. Right dial shows world time including major U. S. cities and Universal (Greenwich) time. Operates on house current-requires only one simple setting for any Reographtc location. Measures 16 high x plaques avallable. Complete sallsfuction guaranteed or tation plaques
Stock No. 1201.HP \qquad $\$ 150.00$ Plus Fod. Ex
NEW LOW-COST, LIGHT-WEIGHT VARI-VOLTMETER Provides complete rariable brightness and speed control In one small slze, high wattuke unit. Made possible by new sill con-cont rolled rectifer. Mukes present 1 gh hing equipment uD to 1.000 watts and $s m a l$ AC-DC power toois more flexibie, versatile. Ideal for home, worksiop. photorraphic, light industrial uses. Heary d
body $3 \%^{\prime \prime} \pm 644^{\prime \prime} \times 2^{\prime \prime}$. 14 lbs. 68^{-}cord.
Stock No. 70,666-MP
$\$ 19.95$ Poztpaid

HOME WEATHER STATION

 New "Weather Station" is highly sensltiro to weather changes. Consistently accurate thermometer to $\pm 2 \%$; barometeraccurate to $\pm .25$ and
hygrometer to $\pm 3 \%$. Fortells weather changes from 12 to 24 hours in adrunce. Tigmrometer callbrated in percent relative humbldy. Exixelilent for teaching weather phenomena and meterological hobby work. Inst rument mounted on handsome wood-grained wall Dunel $15 \frac{1 / 2 " 15 \% " \text { Meter }}{}$ cases heavily metallzed-combines beauty and protection
etched aluminuin, of high precision. Full instructions.
etched aluminum, of hig
Stock No. 70,607-HP

LARGE SIZE OPAQUE PROJECTOR

Ideal for photographers, this lote-cost unit Drojects 3 有 ft . sq. Image at 6 ft . $\mathrm{T}^{\frac{1}{2} / \mathrm{ft} \text {. sq. }}$ mage at 12 fi. l'rojects photos. drawings, ketches. clippings. any opaque copy up to $6^{\prime \prime \prime}$: $8^{\prime \prime}$-larser pleces in sections. Lenses are 2 planoconvex. $3 / /^{\prime \prime}$ dia. mounted in $31 /{ }^{\prime \prime}$ " barrel. I'rojector is $113^{\prime \prime} 2^{\prime \prime}$ high. $13 x^{\prime \prime}$ wide. $9^{\prime \prime}$ front to back. pressed steel in black wrinkle finish, bakeilte handle. Unes two 200 watt bulbs-not included. Coinplete with side platform to boid illustrations, 6 ft. elec. cord, heat resist. plate glass mirror
Stock No, $\mathbf{3 0 , 0 6 6}$. HP

$\$ 42.00$ Postpaid NEWI STATIC ELECTRICITY GENERATOR See a Sturdy, mproved Model off a min See a thrlling spark display as yet set on a min-made- $14^{\prime \prime}$ high. Turn the handle and two $9^{\prime \prime}$ plastic dises rotate in opposite directions. Nietal brushes plek up the static electricity, store it in the Leyden jar condenser until discharged by the Jumping spark. 24 page instruction booklet.
Order Stock No. 70,070-HP \$12.95 Postpaid

Terrifle Buy! American Madel

 OPAQUE PROJECTOR enlarg*s them to $35^{\prime \prime}$, x . 30 , if sictureen projector, lianer is rurther away. No film or neegatives needed, Projects
lettering ints diagrams, picture, photes.
Oplack and white
 41/2" Wlate, Welght 2.
$\$ 7.95$ Postpald

See the Stars, Moon. Planets Close Upl 3" ASTRONOMICAL REFLECTING TELESCOPE

Photopraphers! Adapt your camera to this Scope for ex-

 W) 60 TO 180 POWERI Famous Mt. Palomar Typel An Unusual Buyl Sec the Rings of Saturn, the fasclnating planetMars, huge eraters on the Moon, phases of venus. Equatorial Mount with lock on both axes. Alum Inized and overcoated $3^{\prime \prime}$ diameter high.speed r/10 mirror. Telescope equipped with a 60 X eyeplece and a mounted 13arlow Lens. Optical tripod, FREE with Scope: ENS" plus "HOW TO USE YOUR TELESCOPE" BOOK.
Stock No. 85.050. HP
$41 / 4$ " ReHecting Telescope-up to 225 Power
stock No. 85,105-HP

```
.\(\$ 79.50\) F.O.B
```


MINIATURE WATER PUMP

Wonderful for experlmenta, minhature waterfalls, fountaing;
lo 10 wage rallraid packdrups, felchobylsts. labs, mehools Pumps continuous flow of water it rate of one pint per ninute tot $2^{\prime \prime}$, high. Runs 48 hrs. on battery. Works in Sell.priming.

SCIENCE TREASURE CHESTS

Science Treasure Chest — Extra-powerful magnets, polarizing filters, compass, one-way-mirror film, prism, dlffraction grating, and lots of other items for hundreds of thrilling experiments, plus a Ten Lens Kit for making telescopes, mlcroscopes, etc. Full Instructions included.
70,342 -HP
$\$ 5.00$ Postpaid
SCIENCE TREASURE CHEST DELUXE
Stock No. 70,343 . MP
$\$ 10.00$ Postpaid
'FISH' WITH A MAGNET
Go Treasure Hunting On The Bottom
Great iden! Fascinating fun and sometimes tremendously profitablet Tie a line to our 5-1b. Magnetdrop it overboard in bay, river, lake or ocean. Troll it along the bottom-your "treasure" haul can be outboard motors, anchors, fishing tackle, all kinds of metal valuables. $5-1 b$. Maynet is war surplub-Alnico V Type - Cost $\$ 50$. Lifts over 150 lbs . on land-much greater weights under water. Order now and try this new sport.
Stock No. 70,571 -MP 5-ib. Magnet \$12.50 Postpaid Stock No. 70,570 -NP $31 / 2 \mathrm{ib}$. ifts 40 ibs... 58.75 Postpald Stock No. $70,572-\mathrm{HP} 71 / \mathrm{lb}$. Lifts 175 lbe. $\$ 18.75$ Postpaid Stock No. 85,152-HP 15 Ib . size lifts over 350 Ibs. $\$ 33.60$ FOB

MAKE YOUR OWN POWERFUL ASTRONOMICAL TELESCOPE Grind Your Own Astronomical Mirror Kits contain mirror blank, tool, abra. sives. dlagonal mirror and eyepiece lenses. You build instruments ranging dollars. Stock No.
70,003-HP
$70,004-\mathrm{HP}$ $70,004-H P$
$70.005-H P$ $70.006-\mathrm{HP}$
$70.007-\mathrm{HP}$ $0.007-\mathrm{HP}$

SPELIRINDING EXPERIMENTS with
SILICON SOLAR CELL AND SUN BATTERYI
 experience endiess raselnation in converting sun fers, etc. ldeal for scientific student projects.
 4.5 voltis $10-16$ millamps, 24 -page Handbock given full data on 12 pat experiments. $\$ 2.25$ pontpaid
Stock No. 60.216. . $\$$. Stock No. 60.216. HP Lower" power. lower price than Stock No. 30,411 -MP............. 51.50 Postpaid Solar Celi and Photoceil Handiook, Fasclnating 1 page Handinok on Sllfcon-Ccll and Selentum projects, demonstraand ultra-violet applications. Puperbound $6^{\prime \prime} \times 9^{n}$....s2.00 potpaid

MAIL COUPON for ERIF CATALOG "HP'

ARE YOU ENJOYING THIS ISSUE OF RADIO-TV EXPERIMENTER?

Sure you are . . . and in that case, you won't want to be without the issue that was published just before the one you hold in your hands.
It's chock-full of the same kind of helpful and useful information you'll enjoy reading-and keeping.
How to get a copy? Easy: fill out the coupon below. But hurry: we've only a limited number of copies available. Once they are gone: that's it!

SCIENCE \& MECHANICS-Handbook Division 505 Park Avenue / New York, N. Y. 10022
Yes: Send me \qquad copies of RADIO-TV EXPER. IMENTER-No. 659 at $\$ 1$ each (includes postage and handling).

NAME \qquad
(Please print)
ADORESS

CITY	STATE	$21 P$ CODE

Nickel-Cadmium Batteries . . 95§ ea. The Battery That's Used in Guided Missiles Now Released as Government Surplus
Ideal for photography, models, searchlights, anywhere a lightweight high capacity storage battery is needed. Sintered-plate NickelCadmium, plasticecased, alkaline storage batteries designed for "NIKE" Mis. sile and now surplus. A lifetime battery with no known limit of service (over 6000 recharges on test without loss of capacily). Other features: Virtually indestructible, compact and lightweight, withstands heavy shock and vibration, fiat voltage curve during discharge retains charge year or more, high discharge rate up to 50 amps for this cell. No corrosive funies to harm clothing or equipment, spillproof construction, discharges in any position, indefinite storage without deterioration, operates in temperatures $-60^{\circ} \mathrm{F}$. $10+200^{\circ} \mathrm{F}$. Each cell is approx. 4 ampere hour capacity. Nonij.
nal voltage per cell is 1.25 volts. (A 6 -volt battery requires 5 cells.) Cell size $6^{\prime \prime}$ H. x $2^{\prime \prime}$ w. x $1 / 2^{\prime \prime} T$. Wt. 6 ozs. ea. Uses Potasslum-Hydroxide (30% by weight) electrolyte. Add only distilled water periodi-
cally. A fraction of Government cost.
Brand New cells from Govt. \$. 96 ea.

MOTOR STARTING CELLS

30 A.H. cells. Nickel-Cadmium, steel-cased, with 1/2" screw terminals for mom. current drains to 1000 amps Size $81 / 2^{\prime \prime}$ H. x $3^{\prime \prime}$ W. x $131^{\prime \prime}$ T. Wt. approx. $31 / 4 \mathrm{lbs}$. Permanently sealed. No filling necessary
Used cells
1 l
.
New cells
$\$ 2.95$ ea.
New cells guaranteed io your satisfaction or money reAll cells guaranteed to

ESSE RADIO COMPANY, Dept. RT
42 W. South St., Indianapolis 25, Indiana, 46225

Bookmark

to Hayden Book Co., 850 Third Avenue, New York, N. Y. 10022. They publish the Rider books.

Science and Hi-Fi Projects. If you are the kind of bookworm that likes to build as he learns, then these new soft cover books published by Howard W. Sams \& Co., Inc. are just for you.

Hi-Fi Projects for the Hobbyist by Leonard'Feldman ($\$ 2.50$) is a "how to" text on popular audio projects with heavy emphasis on easy-to-make printed circuit boards. Twenty interesting and useful projects with plans let you build projects such as phono preamp, peak power indicator, speaker enclosures, universal power supply and many others.

Science Projects in Electronics by Edward M. Noll (\$2.95) has a two-fold purpose: to show basic electronic principles through simple projects, and to help the reader to develop practical construction and testing skills. Like Radio-TV Experimenter, all the projects are designed around the use of inexpensive and readily available parts.

Both of the above Sams' publications are available from electronic parts distrbutors and bookstores or direct from the publisher in Indianapolis 6, Indiana.

50¢ buy. Gerting Started in Electronics is the title of a new book published by Allied Radio aimed at both young and old interested in a simple explanation of basic electronics. Portions of the text provide information for the average non-technical person on AM and FM radio, TV, VHF, UHF, Citizens Band and Amateur Radio, kit
(Continued on page 124)

at home

exclusive with Britannica Schools

BASIC MATHEMATICS • WHOLE NUMBERS AND NUMERALS • ALGEBRA I • ALGEBRA II • PLANE GEOMETRY • SOLID GEOMETRY • THE LANGUAGE OF ALGEBRA • TRIGONOMETRY • ANALYTIC TRIGONOMETRY • INTRODUCTORY CALCULUS I \& II • MANAGEMENT DECISION MAKING • VERBAL PROBLEMS • INTRODUCTION TO SETS, INEQUALITIES AND FUNCTIONS • DESCRIPTIVE STATISTICS

These 14 courses-developed by a group of skilled, carefully trained specialists in the fields of home study and mathematicsare offered by Britannica Schools in Programmed Learning format together with individualized, home-study guidance.
What is Programmed Learning? Considered by many educators as the finest way to teach mathematics that has been discovered, Programmed Learning is the technique used in teaching machines. Programmed Learning course material is presented in small, sequential segments, or "frames," each containing 1) a single piece of information closely related to the information preceding it; 2) a question to test your understanding of the information; and 3) a masked, correct answer. When you are ready to check your response to a frame,
you simply move the mask. Thus, you proceed systematically through the course, frame by frame, at the pace best suited to yourself.

What is Britannica Schools? A division of world-famous Encyclopaedia Britannica family, Britannica Schools is the first new approach to learning at home in 50 years, because it is the first, and, to date, the only home study institution that offers courses utilizing Programmed Learning techniques. As a Britannica Schools enrollee, you also have your own, individual instructor whothrough phased examinations and corre-spondence-reviews your progress, checks your grasp and retention of sections of the course material, and insures your complete mastery of the subject.

For full,
FREE details on any Britannica Schools course in mathematics, fill out and send us the coupon today. no obligation, SOLD ONLY THROUGH THE MAIL.

Britannica* Schools
14 East Jackson Boulevard Chicago 4, lllinois RTV 3
Please send me, full details on the course(s) I have checked. I understand there is no obligation, and no salesman will call. \square Basic Mathematics \square Whole Numbers and Numerals Algebral \square Algebra II Plane Geometry Solid Geometry \square The Language of Algebra Analytic Trigonometry - Introductory Calculus I \& II \square Management Decision Making \square Verbal Problems and FunctionsIntroduction to Sets, Inequalities

Name
Age
Occupation
Address
City
Zone \qquad State

SCIENCE \& MECHANICS / Handbook Division 505 Park Avenue / New York, N. Y. 10022

$$
\begin{aligned}
& \text { Enclosed is } \$ \text { Please send mie } \\
& \text { issues of No. } 677 \text { KITCHEN \& BATH IMPROVEMENTS at } \$ 1 \text { each } \\
& \text { includes postage and handling) }
\end{aligned}
$$

Name \qquad
(Please print)
Address

YOUR

 BEST NEWSTAND BUYSOn sale now or use coupon above

Idea book for craftsmen who want to re-do or add to these two most expensive rooms in the house; economically and beautifully. Detailed how-to information on design, modernization, alteration and repair work.

$\overline{\text { NEW }}$ PRODUCTS

Play As You Go
 With New Portable Radio-Phono

Designed with the teen-ager in mind, Channel Master has introduced a transistorized radio and phonograph combination unit. The radio section is a 6 transistor circuit which has been designed to provide high sensitivity with better-than-normal selectivity for a portable. The phonograph plays 45 rpm records and has the interesting fea-

ture of permitting the record to be played while the unit is in any position, or even while it is being carried. The mechanism which accomplishes this trick includes a tone arm which plays from underneath the record (it contains a sapphire needle). Known as the "Swing Along," the unit is claimed to have what the manufacturer calls "remarkably big audio." The unit weighs 6 lbs., operates from four D batteries. Price: \$79.95. (Channel Master, Ellenville, N. Y.)

40-Watt De Luxe Stereo Amplifier

The model SA-40K is a new 40 -watt stereo amplifier which features a Williamson circuit. Designed to sell at a relatively low cost, the people at Merrell Electronics, have turned out a unit with the specifications and external design of units selling for considerably more money. The frequency response

"VALUES" THAT DEFY ALL COMPETITION

Our TREMENDOUS BUYING POWER \& PURCHASING EXPERIENCE make it possible. We invest Thousands of Dollars (in just a single item) to create a good DOLLAR BUY, resulting in the AMAZING \& EXCITING OFFERS that follow: 10% OFF \& FREE GIFT - ON PURCHASE OF \$10 OR OVER s-ANST, sizes madio cras. है I-VARIAMI Cowotastes ant panker axarber arm 1-5". Pm spakit 1-4." om sefaxte.
 1-3" pm splakit \qquad .. 31 A-AVPIO OUTNT THANS. II FOANEES SOLS LTo
 3-1/2 MEG voumar conn il s-asst. © want wint. is wowno contices to - Assoerte voumi s1 S-assortio voxumi com st. \&-logat swryans

 3-1.F. COIL Trangricem. 's
 s-ovat 1000 ANTEMEAS it 2-100 fiticx mitimus... 1 1s - tapio oscitiaroi : 1
 100 -minlatuel Itp coed s1 20-instumert pointit 's 1 20-Asst. eapio wnows is 250-Asst. woot sarwis is 1
 1 1s-AssT. $1 / 92$ scanms - 130 bist inx muls 150-A55T. $1 / 32$ scrawt iso-s/j2 mex mats 1 so- $18 / 32$ Max muts mat 2s0-Asst. SongiRime ues 8 t-is spoox rosumcons $\$ 1$ sordeat $40 / 6$ 3000 -ASST. MAYOWARE KIT ह1 sop - ascorito wasitis cos m Ansortid nivets seo - Assoriti nivets
 e-Asst. WCITI Casss

 SO-RADIO \& TV sockets is
\square

 70 - ASSORTED
RESISTORS FOME IG
sm
WATT 125 - ASSORTED ${ }^{2}$ WATI \$1so- Patisision tesistons '120-AssTED WIRTWOUND \$1 assistoks $3,10,20$-ati 10-Ass RADIO titc. \&1

 DImsitanoano flectoirtic ह1 CONDENSEIS 2 mfa - 680 .

 31 B5 $80 / 80.1800$ 30 - Asst. TVEULAR CONT 11 S0 - Asst morpid con $\$ 1$
 so-condall conplachtis il 200-rumulat conoticestes \& so-assp. mica conotns. st so - Assr. pisc. cehtraice is 10-Asst prove carstals is 2-saticon mictifiens 81

a-merol mansisfors ${ }^{3} 1$. 12
STANDARD TUNEA UNE sTHIES \& 1
So - Asst. citnayic cont is
 2-SELENIUM MECTHAITS s 1
 T0-silicon mictifites Top Fint. 350 ma . 200 pH
 20-A Ass. 1 ED Wirlwound st [EsISTOW, 3.10 .20 15-Asst. 2otair switants \& so-Assortio nuses

10-OUAL CONTEOLS ह
 10- sumectat alllgator is cilps sirs mono nues a 10 pim Jacks nca troe 20-Assi, plot llamts.... ह1 20-pintot ticnt sockets is

 "JACKPOT" beal buy per --N allommint roo so-assoliso ty colls \$1 1- $\$ 10$ incoo TV Avien \$1 20 - ABsontio TV wnoess it scutcmions iverion roke t! Hesd nel 90. Areack Tlansformet is $70^{\circ} \mathrm{T}$ ORFBCTION YOKI \& wind notmont, lonE IENA 1-70. FiYenck Transform ${ }^{1} 1$ te Imel- bewomatie digram 10 - assotilo stamoans st 1 TWNE YHF STRIPS
TV Viticical outrut reapt is 2-atio onticto coils : 4. mk or 10.9 me 2-TV sOUND 1. f. COILs \boldsymbol{s}_{1} 2-sounc piscelmimaree s? 3-AUDiO OUTPN maNB \& 1 3-musmerl avoio outrut : 9 mantionmins soll 3乡" пwitie spaxie *1

* Tim matapmonas so

1000 -HACE micnat scriwn in so-100 Y Wh. WATT EISIS '1 so-*00x \% WATT Esis. ${ }^{\text {s }} 1$ go-micamoto assy TuNL. '1 Lar cowo 2-SILENIUM Bectimets ह1 so-2aC MSEs s.AM

20-3aO Nusts e-mup

s-comwictons \#M.3se s1
3-CONmictens \#so-139 है
10-4itictic tume conds \$1
WIEI So suprots wook.U. \&1 50 - staim assontid sha. 31 GWETII meay nupe
100 assonteo nuesel is 1 S0'- insulatid ghilloid el 32'- TEST mOO wirt so--rit-volifat wint wite
 S0. - MLAY 4.conouctor II SADS TV HI-VOIT ANODE 8 1 10-TV PICTUE! TUBE sock. \& 1 $\mathrm{s}_{\mathrm{min}}^{\mathrm{TV}}$ munt pluge corti....... ${ }^{1} 1$ 200^{\prime} - suss wita ≥ 80 is

MARKET SCOOP COLUNA
 4-1en Comprite sections \&1 10 - POGGLE swircmes. is 1 101 vem:
Q. ICa LOUIPMINT sCETION ह1
 so-9.1. prashl!out oules \& 10-syivania ina ruest on 1
 3-700 teano siw 4 Tuess is 10-Assoertio Tueas 5 -syivania caka tuess 11 s-mototola i2elt Tuets s? 10-syivania xCA tuens $\cdots:$ s 1 ©-reans: Raplo saminiss st 20-2аы! Point Mins
 SO-Assortid TV CCOLLS.... 1 20 ISCUTCMENA Ore. W80 FEIVE
 2-\$5 nLex EAMPISC: oumaery 4 Lhe for ritio or TV. 12 stso corver en a misenthume . S.jACMPORADIO PARYS \$1 I-MEARIMO AID AMPLBFIE \$1
 ano. Hivere in hiehnoy seupe. 1-so. Yaito chllt Clomid is STANDABO UHF IMPUTMWIE! ! c. E. simi wavi eimitatou is Q. IC Louipmant stction st
 $10-2^{\prime \prime}$ aाCondir tam mitis s 1

 CARTIIDOE in rimory sericm.
 winstit \#sc.j ithaco
 SAR \$2.50 SAPPNint Nitides s 2- \$apphire strivs niteres ! tonitte oval sapphire s 1 CARTRIOGE MUNTV UNA M1tert oxnet roplacemest ... 3
 UA. 14 MONAREN AECOROS CHANGE

ImmEDIATE DELIVERY . . SCIENTIFIC IIGHT PACKING for mofe delivery al minimum cosi. HANDY WAY TO ORDER - Penell mark lreme 8 enclose with check or meney order, add extre fer shipping, ezcess rafunded with advanioge to custamer. Tearsheet refumed with order, as your peckling alip.

AT LAST. . . An Indoor TV Antenna That Brings In Every Station Sharp and Clear...

$7^{\prime \prime} \times 9^{\prime \prime} \times 1^{\prime \prime}$ GALLO TWIN TV ANTENNA, Engineered for Black and White, Color, VHF and UHF stations
One of the most remarkable indoor TV antennas ever developed, the GALLO TWIN TV ANTENNA delivers highest quality intense signals on both VHF and UHF bands. Precision-engineered in the Gallo laboratories to provide ideal reception in metropolitan areas - up to 30 miles from stations. Onty $7 \prime \times 9^{\prime \prime} \times 1^{\prime \prime}$, easel packed to stand on set or hang on wall like a picture frame. No ugly "ears" protrude dangerously. Nothing spoils your room decor.

LOOK AT THESE ADVANTAGES

Strongest signals because it's factory-tuned and has exclusive "clarity control" that snaps in both pictures and sound.
Non-directional - receives stations equally well from all directions.
Completely portable - ideal for apartment dwellers and second-set owners.
Rejects noise and interference because it is tuned to accept TV signals, reject unwanted frequencies.

SEE WHAT USERS SAY

"Loaned TWIN to a friend; he won't give it back." RSN, Sewickley, Pa. "Old set is now better than when we purchased it 13 years ago." BW, Brooklyn, N.Y "Very decorative; my friends don't even know it's an antenna until I tell them." BPL, San Francisco. "Great difference in picture. Send me another TWIN." FNL, Chicago. (Copies of letters on request.)

AT LEADING DEALERS, DEPT. STORES.
Or send check or money order - you may charge your TWIN on any credit card, too.

NEW PRODUCTS

is $\pm 1 \mathrm{db} 20-20,000 \mathrm{CPS}$. Outputs are provided for 4,8 and 16 ohms. The circuit contains 8 tubes and 2 silicon rectifiers. Price $\$ 49.95$. (Merrell Electronics, Inc., 519 Hendrix St., Brooklyn 7, N. Y.)

Veteran CB Manufacturer

Releases New Transceiver

Vocaline, one of the earliest CB manufacturers, has developed a new transceiver, the model ED-278 "Commaire." The "Commaire" operates on any 8 channels in the 11 -meter Citizens Band, but may also be operated within the 10 meter Amateur band (by licensed Amateur operators only). Outstanding features of the unit include: patented high efficiency squelch circuit, new design mike which removes unwanted background noises, two-tone grey cabinet, dual conversion superheterodyne receiver, sensitivity better than one-tenth of a microvolt for $10 \mathrm{db} \mathrm{S} / \mathrm{N}$ ratio, selectivity 6 db down at $\pm 2.5 \mathrm{kc} / \mathrm{s}, 3.2$ watts output. Price: $\$ 189.50$. (The Vocaline Company of America, Old Saybrook, Conn.)

New Audiophile Cartridge Features High Compliance

The "Mark IV" is a new version of Sonotone's well known "Velocitone" series phono cartridges. It offers high compliance of $15 \times 10^{-6} \mathrm{~cm} /$ dyne in all directions, clear 30 db separation in each channel and low tracking force (1.5 to 3 grams for professional arms and 3 to 4 grams for chambers).
Fast, Dependable service - Sęling direct by mail for over 16 years
Name

Rad.TEL Tube Co
Dept. RTV
55 Chambers Street
Newark, New Jersey 07105
ENCLOSED 15 s \qquad Tobes Total Part(s) Postage $\$$ Grand Total Please rush order.
SEND:-TUBE SUBSTITUPION BOOK, No. 193 (a 1.25 EACH _Cheater Cord 29 cea . Lots of 3 - 25 ces . \$154 Orders under $\$ 5.00$. Add $\$ 1.00$ handiling charge - plus postage. 105\% \square Send FREE Tube and Parts Catalog

ADDRESS
CITY
ZONE
STATE.

RAD-TEL TUBE CO. NOT AFFILIATED WITH ANY OTHER MAIL ORDER TUBE COMPANY

SAQ5	. 54	6CU5	58	_12AE6	. 50	-17AX4	. 67
-5AT8	. 83	6CU6	1.08	12AE7	. 94	-17006	1.06
-5BK7	. 86	${ }_{6}^{6 C Y} 5$. 70	12AF3	73	18FW6	. 49
5007	1.01	-6CY7	. 71	12AF 6	. 67	18FX6	. 53
5BR8	. 83	-60A4	. 68	12AJ6	. 62	-18FY6	. 50
5CG8	. 81	-60E6	. 61	-12AL5	. 47	-19AU4	. 87
5 CLB	. 76	60G6	. 62	12ALB	. 95	198G6	1.39
${ }^{5} \mathrm{CO}$. 84	-60J8	1.21	-12A05	. 60	- 19EAB	. 79
SEAB	. 80	-60K6	. 59	-12AT6	. 50	1978	. 85
SEU8	. 80	60N6	1.55	-. 12AT7	. 76	$21 E \times 6$	1.49
$5 J 6$. 72	- 6096	1.10	-12AU6	. 51	$25 A X 4$. 70
578	. 86	60T5	81	-12AU7	. 61	25 C 5	. 53
$5 \mathrm{U4}$. 60	-60T6	.53	-12AV6	. 41	-25CA5	. 59
5 UB	. 64	6078	. 94	- 12AV7	. 82	-25CD6	1.52
5 5 6	. 56	-6EA8	. 79	-12AX4	. 67	-25CU6	1.11
5 XB	. 82	__6EB5	. 73	-12ax7	. 63	.250N6	1.42
. 5 Y 3	. 46	CEB8	. 94	12AY7	1.44	-25EH5	. 55
6 6A 4	46	-6EM5	. 77	-12A27	. 86	25L6	. 57
6AC7	. 96	6EM7	. 82	-1284	. 68	$25 \mathrm{W4}$. 68
6AF4	1.01	6EU8	. 79	-12806	. 50	-32ET5	. 55
cags	. 70	.6EV5	75	-128E6	. 53	-35C5	. 51
6AH4	. 81	-6EW6	. 57	-128F6	. 60	- 3516	. 60
6AH6	1.10	-.6EY6	. 75	- $12 \mathrm{BH7}$. 77	-35w4	. 42
6AK5	. 95	$6 F 67$. 69	-128K5	1.00	- 3525	. 60
6AL5	.47	-6FV8	79	-12BL6	. 56	-. 364 ma	. 36
6AM ${ }^{\text {ch }}$. 78	-6GH8	. 80	-12806	1.16	-5085	. 69
-6A05	. 53	-.6GK5	. 61	- 128R7	. 74	$\longrightarrow 50 \mathrm{C5}$. 53
-6A55	. 60	GGK6	79	-128V7	. 76	- 50EH5	. 55
SAT6	. 49	-6GN8	. 94	- 12847	. 17	-50L6	. 61
6AT8	. 86	-646	. 58	-12827	. 86	-7017	. 97
6AU4	. 85	-615G7		-12CN5	. 56	-11723	85
gavg	. 52	616		-12CR6		-_807	75

when it's time to think of college

find out about engineering at MSOE

Planning your education correctly now will enhance your career later! That's why you should obtain all the facts about MSOE programs in Electrical and Mechanical Engineering and Technology.
Learn about courses leading to 4-year Bachelor of Science and 2-year Associate in Applied Science degrees. Find out about MSOE schol. arships, financial aids, job placement opportunities, and other services.

Assure yourself of a bright future in the exciting field of space age engineering and technology. Write for your free "Career" booklet which will tell you about educational advantages at MSOE.

The "Mark IV" is a ceramic cartridge and has approved RIAA response characteristics, $\pm 1 / 2 \mathrm{db}$ from 20 to $\$, 000 \mathrm{CPS}, \pm 2 \mathrm{db}$ to 17,000 CPS with deliberate roll-off to 20,000 CPS. The needle is Nirtually breakproof and may be flexed in any direction without damage. The "Mark IV" is available in two models, the 9TAL.D77HCV with a pair of diamond needles, and the 9TAF-SDHCV with one diamon's and one sapphire needle. Price: 9TAF-D7 7 HCV is $\$ 24.25$, 9TAFSDHCV is $\$ 20$. 25 . (Sonotone Corp., Elms-
ford, N. Y.)

De Luxe

 Horn Tweete?
What in the world is going on?

You're there when it happens... with just the touch of the tuning knob on your Heathkit Shortwave Listener's Radio! Enjoy on-the-spot news and sporting events from Tokyo, England, France, Germany, Moscow... anywhere! Tune in fascinating amateur radio broadcasts, or listen to your favorite programs on popular AM stations! Take your pick! You know' "what in the world is going on" with a Heathkit SWL radio!

Heathkit Shortwave Listener's Radio . . . Fun to build, a top performer!

- Covers standard broadcast and 3 shortwave bands -550 KC to 30 MC • Large, easy-to-read illuminated slide-rule dial © Complete controls for full operating convenience - Built-in speaker and tuning "S" meter - Simple circuit board construction for "beginner" building.
Kit GR-良1 . . . 14 lbs. $\$ 39.95$
SPECIFICATIONS-FRequency range: 550 ke to 30 mc in four bands. Short wave, broadcast bands clearly marked on dial. Controls: General coverape tuning. Bandspread tuning. Antenna trimmer. Bandswitch. Noise Limiter-ON/OFF, phone-Standby.CW switch. BFO control, Audio Gain. AC.ON/OFF, Headphone jack. O-multiplier input jack. Powei requirements:

Heathkit All-Transistor Portable Shortwave Receiver.. . Now Only $\$ 95$

- Deluxe ten-transistor, six-diode circuit - Covers standard broadcast and shortwave bands- 550 KC to 32 MC - Ceramic IF transfilters for fixed aligned band pass - Telescoping $50^{\prime \prime}$ whip antenna-built-in luning meter- Sturdy one-piece metal cabinet with
carrying handle - Operates anywhere with built-in battery power supply.
Kit GC-IA . . 18 lbs. . Was $\$ 109.95$. .Now . . . $\$ 95.00$ Assembled GCW-1 A.s. 20 lbs . Was $\$ 193.50 \ldots .$.
Now.
$\$ 165.00$
SPECIFICATIONS-IF FRequency: 455 kc . Frequency coverage: 550 kc to 32 mc in 5 bands with calibrated bandspread scales (oscillator tuning) for $80,40.20$. 15 and 10 meter amateur bands and 11 meter citizens band. Selecttivity: 3 kc wide at 6 db down. Sensitivity: 10 uv broadcast band, 2 uv short wave bands for 10 db signal-to-noise ratio. Output: 400 milliwatts max. Wave bands : up to 400 nours normal intermittent service using 8 standard size Batteryllie: cells. Dimensions: $61 / \mathbf{l}^{\prime \prime} \mathrm{H}, \times 12^{\prime \prime} \mathrm{W} . \times 10^{\prime 0} \mathrm{D}$.

SCIENCE \& MECHANICS / Handbook Divislon

 505 Park Avenue / New York, N. Y. 10022Enclosed is $\$$ \qquad Please send me the S\&M Handbooks circled below. Each volume is $\$ 1$ (includes post. age and handling). Please allow four weeks for delivery.

672
673

Name. \qquad
(Please print)
Address.

672-INVESTOR'S GUIDE

A Handbook for the individual investor - whether new or experi. enced, filled with tips by the experts on how to investigate before you invest. Studies of various investing methods.

673-SMALL HOME PLANS

A selection of 10 varied plans for homes of 1,800 sq. feet of finished floor area or lesswithin the means of moderate-income families. Plans and specs available from over 20 architects.

Bookn

room environment. Villchur's book is the kind of reading material one should have before and after one buys a high fidelity system.

Allison's text on High Fidelity Systems is aimed at the more timid audiophile who is apt to be a bit more flustered than others once the chit-chat gets technical. It tells the hi-fi system owner how to hookup his components, giving installation tips and a neat little chapter titled "In Case of Difficulty." The low purchase price makes this soft cover a real buy.

Both Reproduction of Sound and High Fidelity Systems are available postpaid from Acoustic Research, Inc., 24 Thorndike Street, Cambridge 41, Massachusetts.

For boys only. If you have a youngster beginning to nose his way through books on electronic subjects, there are two Rider publications he should be reading. Experimental Electricity for Boys by Willard Doan (\$3.45) and Experimental Electronics for Young People by Harvey Pollack \$3.45).

In the Electricity hard cover volume, youngsters between the ages of 12 to 16 are introduced to the mysteries of magnetism and electricity in a dramatic style yet with complete accuracy. The Electronics hard cover text is authored by one of America's leading science high school teachers. In his text, Mr. Pollack offers 49 experiments that are highly organized and logically presented to take the young experimenter from the simple to the more difficult in easy steps. The final group of experiments includes instructions for building an audio amplifier and a two-transistor radio receiver.

If you can't pick up a copy of these basic books at your local book store, send a note

From Parts

To Picture In Just 25 Hours

Heathkit High Fidelity Color TV For As Low As $\$ 349$

25 hours of relaxing fun! That's all! And you've built the new Heathkit High Fidelity $21^{\prime \prime}$ Color TV with the finest color circuitry, components, and performance possible today. Goes together quickly, easily. No special skills or knowledge required! And you enjoy quality features and "true-to-life" color pictures comparable to units costing $\$ 600$ or more!
Compare These Heathkit Features With Others! 27 tube, 8-diode circuit with optional UHF - High definition RCA $70^{\circ} 21^{\prime \prime}$ color tube with anti-glare, bonded-face safety glass - Degaussing coil \& built-in dot generator for perfect picture adjustments - Automatic Color Control - Gated Automatic Gain Control for peak performance - 24,000 volt regulated picture power - $\mathrm{Hi}-\mathrm{Fi}$ sound with outputs for speaker and hi-f amp - Deluxe Nuvistor tuner with "push-to-tune" fine tuning for individual channels - 3-Stage high gain video I.F. - Line thermistor for longer tube life and thermal circuit breaker for component protection - All critical circuits factory built \& tested - Can be custom mounted (requires GRA-53-3 mounting kit) or installed in handsome walnut finish hardboard cabinet - One year warranty on picture tube, 90 days on parts.

Learn Color TV Theory - Save on Mainte-

 nance Costs! The Heathkit instruction manual contains circuit diagrams, alignment, and theory sections so you can easily make necessary adjustments with confidence.Enjoy The Beauty Of Color TV with the added fun and satisfaction of a Heathkit! Order yours now!
Kit GR-53, chassis \& fubes, 118 lbs $\$ 349.00$
GRA-53-1, walmut hardboard cabinct, 70 lbs. . . . $\$ 49.00$
GRA-53-3, custom mouming kit, 10 lbs $\$ 4.00$
GRA-53-2, UHF Converter, $3 \mathrm{lbs}$.

A special subscription to
RADIO-TV EXPERIMENTER
brings you more make-it-yourself projects
1 Year Subscription-\$4.50 (6 Big Issues)

EACH ISSUE INCLUDES LATEST EDITION OF WHITE'S RADIO LOG

SCIENCE \& MECHANICS/Handbook Division 505 PARK AVENUE, NEW YORK, N.Y. 10022

Please enter my special 6 issue subscription to RADIO-TV EXPERIMENTER
$\square 1$ enclose $\$ 4.50$
\square Bill me later
NAME
(Please print)
ADDRESS

CITY
STATE \qquad

SUBSCRIBE WITH CONFIDENCE AT YOUR DOOR

Subscription agency members of Central Registry have deposited a BOND with CR to guarantee delivery of orders to publishers. When their representatives call at your home, their credentials are your assurance of dependable service and continuing reading enjoyment.

NEW Pholnucts

Expander-Compressor

For Hi-Fi Music-System

The Knight model KN-777 is a device which has been designed to come to the aid of hi-fi music enthusiasts. The unit restores the realistic quality to disc and tape recordings and FM broadcasts. The unit automatically increases the dynamic range (ratio between loudest and softest sounds) of program material which has been compressed by record and tape manufacturers. There is no

change in frequency response, low and aver-age-level passages are not altered. A switch permits the process to be reversed, compressing the high levels for use with background music. The $\mathrm{KN}-777$ is quickly connected between the program source and the amplifier, it requires no power supply, and can be used with any amplifier providing a 4 or 16 ohm output. For stereo, only one unit is requircd, it provides up to 8 db of expansion per channel, up to 15 db çompression per channel without distortion. The KN-777 weighs only 3 lbs. Price: $\$ 49.95$. (Allied Radio, 100 North Western Ave., Chicago, Ill. 60680)

UHF-TV Converter Combines
Preamplification And Style

The "Ultra-Vista" is the first (and only) UHF-TV converter to be manufactured with

All Purpose SHOP TACHOMETER

Drilling Speeds

Tape Recorder Speeds

Here is a real surplus scoop that we're anxious to share with you. The components of this kit if purchased individually cost over $\$ 50.00$. Yet because of a surplus windfall we're able to send it complete to you postpaid for only $\$ 16.95$. Once more this tachometer is guaranteed to outperform any $\$ 50$ tachometer available today or your money will be refunded.

MEASURES 0-15,000 RPM IN 3 RANGES

Use it to measure speeds on:

 - TAPE RECORDERS • LATHES • CUTTING tools • Kart engines • model plane ENGINES - HIGH SPEED DRILLS - APPLIANCE MOTORS - PULLEY BELTS • AUTO ENGINES • MANY OTHER USES
Complete kit and instructions make it easy to assemble enfire kit in less than two hours using only hand tools.
 516

 SCIENCE and MECHANICS, KIt Division Dept. 876, 505 Park Avenue, New York 22, N. Y. Add 10% for Canadian and Foreign orders.Enelosed is $\mathbf{\$ 1 6 . 9 . 5}$. Please send me your complete klt and plans for assembling the S\&M all purpose tachometer. I understand that If I am not completely satisfied, I may return the kit withln 10 days for a complete refund.

NAME
(PQLEASE PRINTI)
ADDRESS
| CITY, ZONE, STATE

Buying a New or Used Car?
 Prołecł Yourself with a Checklist
Make sure you know what you're getting-and what you're paying-compare deals, break down optional equipment costs, new and used car charges and financing terms with the Car Buyer's Checklist. A packet of 8 four-page, money-saving Checklists for \$1.00.

Order No. 406
SCIENCE AND MECHANICS. Craftprint Division sos Park Avenue, Now York 22, N. Y.

Imported Stiletto Knife

 Prevents shapping en ton release. Conen in use. Puth but yet nugked. Flic quality, nolished nickel-ateel razor-sharp blade. PIERCES METAL. Nirrow, lapered stiletto blade whick thek rigid and emergencles. Comfortable handie, safety, gunde. pPO. \$2,50 ${ }^{10}$ Throwing Knife ${ }^{100}$


```
water McGEE, S 1964 CATALOG SENT FREE 1001 BARGAINS IN
SPEAKERS—PARTS-TUBES-HIGH FIDELITY COMPONENTS-RECORD CHANGERS— TAPE RECORDERS-KITSEVERYTHING IN ELECTRONICS
McGEE RADIO CO.
1907 McGee St.
Kansas City 8. Missouri
\(\square\) SEND 1964 McGEE CATALOG NAME
ADDRESS
CIIY
```


New Jet Engine Burns Gasoline

Powerful Electric Generator
Cost U. S. Gov't $\$ 20.001$ Generates Up To 100 Volts. Use to generate electricley:
to ring bells, light up lights: as a medical battery deliver terrific electrical thock as
joke, manyy electrical ex-

Dept. 405

Enjoy the Savings and Pleasure of Building Your Own:

Presision Dernde Resistance Bus

Designed so the electronic experimenter can get any value of resistance at 1% accuracy. Made of precision components, this decade resistant box offers such advantages as:

Speed Fast finger-tip switching action provides any resistance value from 1 ohm to $1,111,110$ ohms within seconds.
Aceuracy . Add or subtract as little as 1 ohm in critical circuits with 1% accuracy.
Convenience . . No knobs to fiddle with when changing from range-to-pange. Carrying handle can be set to hold the box at an easy to work angle and efficient bench-top visibllity.
Quick Assembly ... Ordinary hand tools are all that's required to assemble this precision instrument in less than 2 hours.

This S\&M Decade Resistance Box kit carries an unconditional guarantee of performance and accuracy. If for any reason you are unsatisfied with the performance, it may be returned within 10 days and your money will be refunded.

NEW PRODUCTS

a built-in stage of RF preamplification to help TV signals override "snow." The "Ultra-Vista" is designed to be a welcome addition to the decor of a room, with its modern, low-silhouette cabinet. The circuit of the "Ultra-Vista" contains a frame-grid tube (6DL4/EC88), a Nuvistor (A15300), a diode (K3D), and a transistor (PADT-28) arranged for low-noise and high-gain. The noise figure is not more than 14 db , with the gain at least 10 db . Its input and output impedances are 300 ohms with a VSWR of 1.5:1 maximum. The "Ultra-Vista" consumes 10 watts at 117 volts AC. Price: \$49.95. (Jerrold Electronics Corp., 15th \& Lehigh Ave., Philadelphia 32, Pa.)

Auto/Professiunal
 Hi-Fi Turntable

The new United Audio Dual 1009 is a turntable with a dynamically balanced tonearm which can track and trip below $1 / 2$ gram, making it suitable for use with very high compliance cartridges. The tonearm has virtually frictionless pivots and ball bearings and can be precision balanced by means of a fine-thread counterweight. The high torque motor maintains a speed accuracy within one-tenth of 1%, even with line voltage

variations of 10%. The Dual 1009 has a variable speed control (6% variation) and has a built in switch which turns off the amplifier after play. Other features include: 4 speeds, 7 lb . non-ferrous turntable, interchangeable single play and changer spindles, continuous repeat, neutral gear, and slide switch controls. Specs for rumble, wow and flutter are claimed to match or surpass all professional caliber turntables. Price: $\$ 94.75$. (United Audio, 12 West 18th St., New York, N, Y. 10011)
(Continued on page 126)

AGENTS WANTEO

I'LL Send You full-size famous Blatr home products for Free Trial, to help you make more money, spare time or full time. Show rriends, nelghbors, take easy big orders, make generous profits. Write Blalr, Dept. $521-\mathrm{AB}$, Lynchburg, Va.

AUTOMATIC Bed Warmer you sleep on, not under. Beats electric blankets 10 ways. Generous profits. Patented Products. A-14, Danville, Ohio.

AUTHOR'S SERVICE

WANTED: Short storles, books, articles. plays of all descriptions for sale to publlshers, producers. Free Literature! Literary Agent Mead Dept. 33A, 915 Broadway, New York City 10.
PUBLISH your book 1 Join our successful authors; publiclty advertising promotion, beautiful books. All subjects invited. Send for free manuscript report and detalled booklet. Carlton Press. Dept. SMH, 84 Fifth Avenue, New York 11.

AUTÓ PARTS \& ACCESSORIES

TRANSISTOR Ignition Coll-Instructons. Spectal $\$ 8.50$. Anderson Engineering. Wrentham, Mass.

BATTERIES, GENERATORS

REBUILD Batterles! Complete Manual $\$ 3.00$. C.O.D. Accepted. Bayer Publicathons, 938AK, Betty Avenue, Neenah, Wis.

BUSINESS OPPORTUNITIES

INVESTIGATE Accidents, Earn $\$ 750.00$ to $\$ 1,000$ monthly. Men urgently needed. Car furnished. Business expenses pald. No selling. No college education necessary. Plek own job location. Investigate full time, or earn $\$ 6.44$ hour spare time. Write for Free Literature. No obligation. Unjersal CMH-2, 6801 Hillerest, Dallas 5, Texas

VENDING Machines-No selling. Operate a route of coln machines and earn amazing profts. 32 -page catalog Free! 715 Ensor Machine Corporation, Dept. 41 715 Ensor St., Baltimore, Md., 21202.

I Made $\$ 40,000.00$ Year by Mallorder Helped others make money! Start with \$10.00-Free Prood. Torrey, Box 3566-T Oklahoma City 6, Okla.

LEARN Flower Arrangement \& Floristry. Start your own business, part or full time. Many good paying positions open. Earn while learning. A Lifetime Career's home study course. Send for Free Booklet. 11826 San Vicente Blvd., Los Angeles 49 . Callfornia.

MAIL Order Pays Big! Tested, proven, home moneymaking opportunity! EveryNew Jersey.

MAIL Baby Catalogs imprinted with your address to New Mothers for Blg lanti, Michigan.

For information on Classified ads-to be included in our next RADIO-TV EXPERIMENTER HANDBOOK and other Handbooks-write C. D. Wilson, Mgr., Classified Advertising, SCIENCE \& MECHANICS HANDBOOK DEPT., 595 Park Ave., New York, N. Y. 10022

CHROME-Plating Equipment and Supplles; All other finishes. Home workshop and industrial sizes. Complete setups for bumpers, with technical assistance at your as $\$ 100.00$ Send $\$ 1.00$ (retundable) ior aquipment gulde formulas operatis date quipment gulde, formulas, operating data, atalog, HBS Equipment Division 84, 3445 Union Pacific Ave., Los Angeles 23, Callf.

START your own Business. Free Detalls. D. Pastam Co., P.O. Box 156. Levittown. Pennsylvanla.

LEARN Landscaping and growing of plants. Latest information on propagatlon, soll testing, plant growth regulators, garden design and color. Many money: making opportunitles. Free booklet. Lifetime Career Schools. Dept. SAC-14, 11826 San Vicente Blvd., Los Angeles 49, Calif.

MAKE Mall Order pay. Get "How To Write a Classiffed Ad That Pulls." This handbook tells how, with examples: Includes certificate worth $\$ 2.00$ toward claswlls ad in S \& M. Send sics, 505 Park Ave., New York, N. Y., 10022.

BUY IT WHOLESALE

DEALERS Cost-all 1963 Cars- $\$ 1.00$. Petros, 5404-S South Mozart. Chicago 22.

DRUG Sundries, Vitamins, Wholesale catalog 106. SM Tretts Co., Box 186. Buffalo 1, N. Y.

CAMERA \& PHOTO SUPPLIES

THINGS Japanese-from Cameras to General Merchandise. Any inquiries answered. Catalog, information and pricelist $\$ 1.00$. Tomlo Ueno, 538 Shibamatacho, Katushikaku, Tokyo, Japan.

BUILD your own supersensitive light meter. Use newest cadmium sulfide 118 ht cell, shows ASA speeds 3 to 25,000 , F stops 7 to 80 measures accurately moonilight to bright sunlight. Send $\$ 19.95$ to Kit Dlvision, Sclence \& Mechanics, 505 Park Ave., New York, N. Y.. 10022.

CHEMICALS \& APPARATUS

PYROTECHNICS Manual contalns formulas for Flares, Explosives and "Stars." \$1.00. Kel-Tec Laboratory, Box 804. Burlington, Vermont.

COINS, CURRENCY TOKENS

TRUNKFUL 25,000 Indian-Lincoln cents mixed (Irom the 1920 's \& older). Will $\$ 25.00$ Srab-Bag style. 400 mixedFischer, Box 5490 , Sherman Oaks 111 , Callfornia.

UNCIRCULATED 1935 Pony Express Silver Commemorative Medal $\$ 1.00$. Coln Lists Free. Sayers, 1000 Unaka, Johnson City, Tennessee.

10 DIFFERENT Indian Cents or V Nickels plus Bargain List $\$ 2.50$. Rettew, 5618 Pico Bivd., Los Angeles 19, Caltf.

EARTHWORMS

BIG Money Raising Fishworms and Crickets. Free Literature. Carter Farm-O. Plains, Georgla.

EDUCATION \& INSTRUCTION

USED Courses, Books. List 10c. Smith's, 124 Marlborough, Salem, Mass.

OIL Color Photographs at Home. Good spare-time income, Interesting hobby. New, easy method qualifies you for immedate earnings. Write for Free Booklet, Studios, Box 39, Dept. T-14, Claymont. Delaware.

USED Correspondence School Courses, Educational Material. Some Free. Large trolt, Mich., 48231.

1001 How-To-Ideas-Loaded with practl-
cal, money-saving tips for do-it-yourself-
ers. Einks cover home mantemance, car
servicing, boating, outdoor sports, elec-
tronlcs, etc. A new quarterly Handbook
\#637. Send $\$ 1.00$ to Sclence \& Mechanics,
Handbook Div. 505 Park Ave., New York,
New York, 10022 .
ELECTRICAL EQUIPMENT \& SUPPLIES
BUILD a high prectsion all purpose tachometer. 3 ranges. Measures speeds on tape recorders, lathes, cutting tools, auto engines, many more uses. Only $\$ 16.95$. Kit Division, Science \& Mechanics, 505 Park Ave., New York, N. Y,, 10022.

EMPLOYMENT INFORMATION

OVERSEAS Jobs. List $\$ 2.00$. Unlversal, P. O. Box 643, Kenosha, Wise. 53141 .

FLORIDA LAND

FLORIDA Water Wonderland: Homesites, Cottagesites, Mobilsites. Established area. $\$ 390.00$ Full Price, $\$ 5.00$ Month. Golinming, Fite Lake Woatirg, Eunting, Golfing. Write Lake Weir 80, Sllver
Springs, Florida, Ad $6-1070-(\mathrm{F}-\mathrm{O})$.

FOR INVENTORS

PATENT Searches 48 hour alrmall service, $\$ 6.00$, including nearest patent copies. More than 200 registered patent attorneys have used my service. Free Invention Protection Forms. Write Miss Ann Hastings. Patent Searcher, P.O. Box 176. Washington 4, D. C.

INVENTIONS needed immedlately for manufacturers. For additional Information write Kessler Corporation, C-70FI, Fremont, Ohlo.

help wanted

$\$ 23.00$ WEEKLYi for wearing lovely dresses supplied to you by us as extra rewards. Just show Fashion Frocks to iriends in spare time. No investment. canvassing, experience necessary. Fashion 45202.

HOME WORKSHOP SUPPLIES

FREE. New Catalog, 2447 Plans. Patterns. World's greatest selection things to do, make. Fun. Proft. Craftplans, $18250-\mathrm{H}$, Harwood, Homewood, 111 .

ANSWERS to your woodworking problem? We've got them in Woodworker's Encyclopedia No. 634. How the pros use tools. A must book. Send $\$ 1$ to Science \& Mechanics, 505 Park Ave., New York. New York, 10022 .

HYPNOTISM

NEW concept teaches you self-hypnosis quickly! Free Hiterature. Smith-McKinley, Box 3088, San Bernardino Callf.

MONEY-MAKING OPPORTUNITIES

MEN-WOMEN! Start Money-Making Plastic Laminating Business at home in spare time. Materials that costs 11 c brings back $\$ 2.58$. No canvassing or seling but mail orders bring in $\$ 20.00$ a day. Write for full particulars free. Rush name on postcard to Warner. Room CL-426J, 1512 Jarvis, Chicago 26, 111 .

MAKE Money Writing Short Paragraphs! No tedlous studg. I tell you what to write, where and how to sell; and supply list of editors buying from beginners. Many smali checks add up quickly. Write to sell, right away. Send for Iree facts. Benson Barrett, Dept. C309-H. 7464 Clark. Chicago 26.

SELL Jewelry to friends: Assemble yourself; Kits pricellst. Cash, 910 Bellrose N.w., Albuquerque, New Mexico.

EASY to start rubber stamp business at home in spare tlme. Make up to $\$ 9.80$ an hour without experience. Facts free. Write to Roberts, 1512 Jarvis, Room CR-426J, Chicago 26.

OPTICAL GOODS

CUSTOM Telescopes, Lens, Tripods, Equatorials, Magniffers, and Accessories, UPCO, Sunbury, Penna.

PATENT SERVICE

PATENT Searches-48 hour airmall service, $\$ 6.00$, Including nearest patent coples. More than 200 resistered patent atiorneys have used my service. Free Ann Hastings, Patent Searcher, PO. Box 176, Washington 4. D. C.

PATENT Searches, $\$ 6.001$ For free 'Invention Record" and "Important Information Inventor's Need." write: Mlss Hayward, 1029-D Vermont, Washington 5, District of Columbla.

PETS-DOGS, BIRDS, RABBITS, HAMSTERS, ETC.

MAKE blg money raising rabbits' for us. Information 256 . Kenney Brothers, New Freedom. Penna.

EARN $\$ 10,000$ Yearly Ralsing Angora Rabblt Wool For Us. Information $25 t$. Coln, Amerlcan Angora Company, Malta 77. Montana.

RADIO \& TELEVISION

LEARN Radio Electronics. Big 35 Lesson Home Study Course $\$ 12.00$. Particulars Free. Zak, Nampa, Alberta, Canada.

CATALOG of all Science \& Mechanics Craftprints. Send 25 e to cover postage and Handing to Craftprint Div., Sclence \& Mechanics, 505 Park Ave., New York. New York. 10022.

SALESMEN-DISTRIBUTORS

YOUR Own Business Without Investment! Sell advertising matchbooks to local businesses. No experlence neededfree sales kit tells how and where to get orders. Part or full time. Big cash commissions. Match Corporation of America, Dept. CE-14, Chicago 32.

SCIENCE EXPERIMENTS

FIREWORKS! Rocket Fuels! Explosives ! Easily prepared formulas $\$ 1.00$. U. S. Pyrotechnics, Box 234, Cedarhurst, N. Y.
> "SCIENCE EXPERIMENTER"-A must Handbook for hish school science students. spelling out the kind of projects they can develop Into Science Falr winners. Seml-annual-a favorite of teachers. Send $\$ 1.00$ o Science \& Mechanics. Handbook Div.. 505 Park Ave., New York. N. Y., 10022.

SPORTING GOODS, FISHING TACKLE,

 ARCHERY, ETC.KNIVES, Catalog a quarter. Hunting. Collectors. Pocket. Hartstone, Seneca Falls, N. Y. 13148.

START YOUR OWN BUSINESS

MAKE Mall Order pey. Get "How To Write a Classifled Ad That Pulls." This handbook tells how, with examples: In-
cludes certificate worth $\$ 2.00$ toward clascludes certincate worth $\$ 2.00$ toward classlifed ad in S \& M. Send \$1.00 to C. D. Ave.. New York, N. Y., 10022.

TREASURE FINDERS

GOLD, Sllver Indicators and Locators. Write, Box 51, Plant City, Florida.

In One Evening The "MINIMAX"

EASY to build Your Own Boat

Minimum cost-maximum performance. You get both in "Minimax." Built in one day at a very low cost. it will carry 2 people, take outboard motors ranging from 3 to 15 hp . and has a water-tight air compartment that will support 900 lbs. even with the cockpit completely filled with water. As to performance. "Minimax" will plane a 165 lb . man up to 15 mph . with a 3 hp . outboard motor. With 10 hp . and over, the hull planing area diminishes until "Minimax" becomes air-borne and rides upon the motor's cavitation plate. Length 8 ft . Beam, 4 ft . Weight 68 lbs. It's easy to build.

Enlarged Drawings
 Craft Print \#255 available at

 Full-size Patterns
 Craft Print \#347 available at

By Joseph Marshall

Radio-TV Experimenter brings the knowhow of an electronics expert to its readers. If you have a question to ask of Joe, just type or print it on the back of a 4¢ postal card and send it to "Ask Me Another," Radio-TV Experimenter, 505 Park Avenue, New York, New York 10022. Joe will try to answer all the questions in the available space in up coming issues of Radio-TV Experimenter. Sorry, Joe will be unable to answer your questions by mail.

Question: How can I turn a plain 6.3-volt filament transformer with no center tap into a filtered 6 volts for operating my transistor radio?

RK, Montreal, Canada Answer: Try the circuit below. Since your radio draws only a fraction of an amp., the inexpensive top-hat rectifiers will do. Lafayette offers four 750 mil., 100 PIV diodes for 89c (Lafayette Part No. SP-276). You can use the miniature electrolytic condensers rate at $160 \mathrm{mfd} ; 15$ WVDC, or for bethr filtering a 2000 mfd ., 15 WVDC, following the resistor. The output voltage will depend on the resistor. It will run about 9 volts without a resistor; this would replace the typical 9 volt battery. If you need 6 volts try resistors in the 5 to 50 ohm range. The resistance will depend on the current drawn by the radio.

FILAMENT TRANSFORMER

Question: How can I convert a Knight-Kit transistor to the broadcast band for use in a "carrier-current" radio station, and how would I couple it to the power line?

BG, Cincinnati, Ohio
Answer: It can be done but first, it would

On sale now or use coupon below

Dedicated to the mechanically-minded reader with an automotive interest. Features latest Detroit and foreign models, karts, customizing, sports cars, hot-rods, etc. Also, step-by-step articles on car servicing, maintenance and modifications.

SCIENCE \& MECHANICS / Handbook Division 505 Park Avenue / New York, N. Y. 10022

Enclosed is $\$$ Please send mè copies of NO, 675 CAR \& MOTOR at $\$ 1$ each (includes postage and handling).
\square Enclosed is \$3. Enter my special 4-issue subscription to CAR \& Motor, starting with No. 675.

Name
(Please print)
Address
City \longrightarrow State \quad Zip \quad Code_______

Ask Ω Me Another

take a pretty long article to tell you how and second, unless precautions are observed you might easily run afoul of the Federal Communications Commission and become a candidate for one of those nice stiff fines they are imposing. My suggestion is that you go to your library and obtain a copy of the Radio Amateur's Handbook for 1944-the 21 st edition. This has an entire chapter on this subject of carrier current communicaton. And if you enjoy assembling kits, many of the major kit manufacturers carry power line intercoms in their kit line.

Question: I overheard someone say that with a simple revision on a transistor pocket radio it can be turned into a broadcast band "walkie talkie." How can I do this?

AWB, Providence, R.I. Answer: Get hold of the guy and ask him to give you the secret; and if hell write it up the chances are the Radio-TV ExpertMENTER would be interested in publishing it and paying him for it.

Yes, this could be done but the only way I can think of it would require quite a bit of rewiring and reconnecting which is far from simple, especially considering the miniature size of a transistor pocket radio.

Keep in mind that there are some FCC regulations on radio equipment of this type. Best thing to do is check into Part 15 of the FCC regulations before any soldering is started.

Question: How long should a short-wave antenn be? How long should an antenna be for DX on broadcast band? What commercial wire is best and most economical for this purpose?

FJC, San Francisco, Calif.
Answer: It isn't that simple but well try to give a simple answer. The modern receiver is so sensitive that it does not need an elaborate antenna. Much more important is favoring the pick-up of signal over the pick-up of noise, especially man-made electrical noise. A simple antenna that will give good results consists of two pieces of 30 -foot wire fad at the center with twisted pair wire, as diagrammed below. The antenna should be
located where noise pick-up would be lowaway from power and telephone lines, transformers, and house wiring. It is best not to put it over the roof of a house because usually there is a lot of electric wiring in the ceiling of a home which can transfer noise to antenna. Stretching from your house to a garage, tree, or pole is better. You can buy kits for this kind of antenna for between $\$ 2$ and $\$ 5$.

To give more uniform results over entire shortwave spectrum there are antennas which have two or three or more dipoles like the above-or a single long dipole with tuned traps which is equivalent to several dipoles. Hy-Gain and Mosley offer multiple trap antenias for about $\$ 15$.

The simplest antenna for broadcast band reception is simply a 50 -foot piece of wire run from the receiver, out a window, to any convenient tall support. It will not have the interference rejection of the di-poles fed with the twisted pair line, but in a quiet location it will do a good job with a good receiver. And if you are on a budget, this long-wire antenna can also serve for shortwave receplion.

As for wire, insulated hook-up wire will do for the last type of antenna. No. 7×24 braided copper wire has been the standard antenna wire for generations and runs about a penny a foot.

Question: I have a 10 -watt Sergent-Rayment hi-fi amplifier and I wonder if it would do any good to hook it up to my AM-FM-SW radio, and if so how can I do it?

FJC, San Francisco, Calif. Question: I have a Hallicrafter short-wave radio arid I would like to feed it into my hi-fi system. How can I do this without modifying the receiver?

JKK, Little Rock, Ark.

 Answer: Both you gentlemen will probably get a decided improvement in tone quality in this way: connect an 8 -ohm resistor from 1 to 4 watts across the speaker terminals of the radio and disconnect
Ask Ω Me Another

or to the accessory input jack on the hi-fi preamplifier.

Question: I cannot find the GE 1493 lamp for the Microscope Illuminator described in Electrical Handbook, Volume 3. Is there a substitute?

 an antenna array covering the community. No complex cable system is necessary. Each customer pieks up the signal with his own regular type TV antenna. The total cost is Jower and maintenance is simpler. Translators, however, are regulated by the Federal Communications Commission and a license is required to install and operate one. It is suggested that you write the comhission (Washington 25, D. C.) requesting a copy

TRYTHIS

SUPER SENSITIVE PHOTO METER FOR 10 DAYS -AT OUR EXPENSE
Science \& Mechanics GUARANTEES it will out-perform any other meter-and give you better pictures right away-or the $\mathbf{1 0}$-day trial costs you nothing!

TREMENDOUS RANGE! PIN-POINT ACCURACY!

Just look at these amazing specifications:

- Super-sensitive CdS cell
- EV-EVS-LV settings
"sees" light from 0 to $10,000 \mathrm{ft} / \mathrm{lamberts}$
- 43° acceptance angle
- ASA speeds 3-25,000!
- 4 sensitivity ranges - from
- F 0.7 to Fg 9 ! "pitch dark" to sun bright!
- Exposures from $1 / 1500 \mathrm{sec}$. to 8 full hours!
- Compact in size-welghs only 10 oz .

PLUS-New plastic cap used for reading incident light, also shields cell from light when not in use... new positive meter lock holds needle securely in OFF position . . . reads both re: flected and incident light . . . use for movies, stills, microscopes, telescopes-even densitometers . . . plus built-In battery test switch.

ACCLAIMED BY LEADING PHOTOGRAPHY JOURNAIS

"As sensitlve as anything on "Certainly one of the most unthe market . . so adaptable- usual, most versatile, most 4 separate ranges have the ef- sensitive exposure meters at fect of spreading the meter's any price today." scale." -U.S. Camera
-Modern Photography
Available-with rich-grained carrying case included-either as a fascinatina to build Kit, or completely assembled and tested. kit can be put together with just a soldering iron and screw. driver in less than 2 hours with easy step-by-step instructions.

ASSEMBLED (no. 102)

CARRYING CASE ONLY (no. 103)-\$2.00
-
Science 2 Mechanics-Kit Division
A
505 Park Avenue, New York, N.Y. 10022
Please rush me the new S\&M super-sensitive Photo Meter as checked below. If not completely satisfied I will return the Meter within 10 days for an immediate refund of my purchase price-in full!
KIT (no. 101) \$24.95
ASSEMBLED (no. 102) $\$ 29.95$
\square CARRYING CASE ONLY (no. 103) \$2.00
Check or money order en: closed-ship prepaid.\$3 deposit enclosed-shlp C.O.D. for balance plus postage and charges.

NAME
(Please print)
ADDRESS
\qquad
N.Y.C. residents add 4% city sales tax. Canada and foreign add 10%.

Ask Me Another

of the regulations applicable to community TV distribution systens and a list of manufacturers supplying approved equipment for this service. Jerrold Electronics Corp., 15th and Lehigh St., Philadelphia, Penna., is óne of the largest manufacturers, and operators, of community TV systems.

Question: In my area and on my receiver I hear station WKBW on 1520 kc and also on 610 kc . Can you tell me the reason for this?

RAS, New York, N. Y. Answer: Your receiver is undoubtedly a superheterodyne in which the local oscillator frequency is equal to the station frequency plus the intermediate frequency, which typically is in the region of 455 kc . When you have your receiver tuned to 1620 , the local oscillator is at 1975 and the difference beat note is 455 which gocs through the IF amplifier, is detected and becomes audible. When you tune to 610, the local oscillator is at 1075. The difference between 1520 and 610 is also 455 and goes through the IF amplifier to become audible though probably at reduced volume. This unwanted signal at 610 on the dial is called an "image."

Question: Which is more harmful to people, to get shocked by a $\mathbf{6}$-volt $\mathbf{1 0}$-ampere source or by a $\mathbf{5 0 0}$-volt $\mathbf{1 0}$-milliampere source?

CG, Lincolnwood, III.
Answer: Ohm's Law also applies to people when they become part of an electric circuit. You will recall that Ohm's Law says that the current (1) flowing through a circuit, or branch of a circuit will depend on the voltage (E) across the circuit and the resistance (R) of the circuit. Your body resistance is very high, usually well over 10,000 ohms. If you insert it across an electric circuit, your body will be the resistance in the circuit.

Assuming your body resistance is quite low, say 60,000 ohms, in the case of the 6 volt source the current flowing through your body would be $6 / 60,000$ or 100 microamperes, the total power would be .0006 watt. In the case of the 500 -volt supply the current would be $500 / 60,000$ or 8.3 milliamps
and you would be called to dissipate 500 x .0083 or 4.15 watts. Clearly the latter is more dangerous.

There are no hard and fast rules, however, on how much voltage and current a body can stand without damage. Anything above 10 milliamps can be dangerous and anything above 50 milliamps can be fatal. In view of high body resistance it usually takes a high voltage to draw that much current. But if the body resistance is low, as for instance if it is moist, a relatively high current may flow with even a relatively low-voltage source The only way to outwit Ohm's Law is by keeping your body out of electric circuits.

Incidentally, in about 90 per cent of the cases of electric shock where breathing has ceased, a fatality can be avoided if "mouth-to-mouth" artificial respiration is applied to the shocked individual within about 4 min utes. Everybody who has occasion to work with dangerous electrical currents, and his associates and family, should learn the technique. Consult your local Red Cross Chapter or family doctor.

Ouestion: Many times I have heard the tern "WPE Short-Wave Monitor" How can I beconte one?

RF, Birmingham, Ala. Answer: The WPE program is sponsored by one of our competitors. Popular Electronics, One Park Ave., New York, N. Y. 10016. Write them and ask for an application form, enclosing a dime.

Question: When the power supply transformer of an AC superhet shorts or hurns out, is it feasible to convert the power supply to AC-DC without altering any other section of the set?

WW, Greensboro, N. C. Answer: It would be possible but not very feasible in terms of the cost and labor in. volved. Trouble is that transformer type sets have the filaments of the tubes wired in parallel and supplied from the 6.3 -volt (or 2.5 -volt) winding of the transformer. To adapt to AC-DC it would be necessary either to rewire the filaments in series, possibly changing tube types, and/or add a series resistor or ballast tube to bring the line voltage down to the proper value. You will find it much simpler, cheaper and more satisfactory to get another transformer. You can find suitable ones in other old radios, or pick one up from a surplus dealer. McGee

Radio, 1901 McGee St., Kansas City 8, Mo. is the best source I know of for replacement transformers suitable for such an application. You can get one that will do the job for between $\$ 3$ and $\$ 6$, from them; and believe me this will save you money and bushels of trouble.

Question: What's the best product for cleaning records and keeping them free of pops and crackles?

JNB, Dallas, Texas.
Answer: It is called water, produced by your city, county or sanitary district, and comes out of the faucets in your kitchen or bathroom. Let a gentle stream of it flow over the surfaces of the record, then wipe in a circular direction following the grooves, with a very soft, very fine piece of chamois. If you touch the record to the faucet while washing or, preferably, after chamoising, the static charge will be discharged. If the record is very dirty, or has fingerprints or signs of any kind of film or grease, or is heavily charged with static put just a little household detergent into a pan of water, and wash record with this, rinsing with flow of clean water and chamoising as above. Incidentally, here is a very simple test to check whether any record has a static charge: tear a small piece of newspaper into small bits, like confetti, and place on any surface. Bring record near bits of paper. If paper is attracted and jumps to record, it is charged. If record does not attract bits of paper it is neutral. Aside from the fact that it is cheap, the big virtue of WATER is that (if it is fit to drink) it will leave no grease, silicone, or any other kind of film to bind dust to record.

"Can't say right now, Bill, the William Ida Frank Edward's antenna is tuned in."

SURPLUS BARGAINS

Hoffman Silicon Solar Cells $\$ 1.00$
Sigma \#4F Sensitive Relay 1.50
Silicon Rectifiers, stud mount 2 amp. $8 / 1.00$
2N38 Audio Freq. Transistors12/1.00
1N82 Diodes, UHF \& Gen. Purp. 25/1.00
MADT RF Osc. HF Transistors5/1.00
Tophat Silicon Rectifiers unchecked 15/1.00
40 Watt Silicon Transistor 2N389 type 1.00
Computor Boards over 100 resistors, diodes,
RF Chokes, Transistors, etc. 1.00 ea.
Geiger Counter Kit with $\$ 55.00$ Hi-volt sply ... 9.50
Disc Capacitors, kit of 100 pieces 1.00
Navy Remote Control cost $\$ 250.00$ with tel.
dial, selsyn indicators, lights, knobs, switch-
es, etc. Brand new. Wgt. 29 Ibs. 6.00
Infra-Red Filter $51 / 2$ inch dia, 1.75
Sound Power Fones w/100 ft wire 1.00
Snooperscope Viewing Tube \#6032 cost $\$ 100$. New with instruction sheet
Solar Cell Kit, 5 cells with instruction book ... 1.50
CK-722 Transistors6/1.00
IBM MEMORY PLANE 4096 bit, perfect, cost $\$ 4,000$

All material FOB Lynn Mass. (you pay shipping)
Many many more bargains in our large catalog.
JOHN MESHNA JR. Liqnn, Mass:

latest SAMS BOOKS for EVERYONE IN ELECTRONICS

\square How To Read Schematic Diagrams. Not only shows you how to read and interpret diagrams, but analyzes each component, its construction, and its circuit purpose. Order RSD-1, only. Computer Circuit Projects You Can Build. Starting with a simple flip-flop circuit, this book details the construction of 13 basic analog and digital computer-circuit projects. You not only learn computer circuitry but build useful devices as well. Order BOC-1, only $\$ 2.95$ ABC's of Short-Wave Listening. Your introduction to the exciting world of short-wave radio; tells what programs are available; gives practical advice on receivers, antennas, best listening times; a wonderful guide to this great hobby. Order SWL-1, only. . $\$ 1.95$
North American Radio-TV Station Guide. Full data on 1000 VHF and UHF 'TV stations, over 5000 AM stations and 1500 FM stations; includes 14 valuable station location maps. Invaluable for DXers, TV-radio technicians, etc. Order RSG.1, only . $\$ 1.95$

S PHOTOFACT Guide to TV Troubles. Causes of more than 90% of TV troubles can be isolated in minutes by following the procedures described in this book; shows symptoms, analysis checks and where to look for troubles. Order PFG.1, only. . $\mathbf{\$ 2 . 9 5}$How to Repair Major Appliances. Fxplains operating principles and shows how to repair refrigerators, freezers, automatic washers, dryers, dishwashers, garbage disposal units, air conditioners, water heaters, etc. Order MAJ.I, only.
Automoive Electronics Test Equipment. The "'why and how" of test equipment used in automotive servicing. Shows how to use instruments to repair carburetion and electrical systems. Order AEL-1, only ... \$2.50Basic Electronics Series, 4 Vols. Dynamic new explanation of circuit action through the use of unique 4 -color diagrams which show you what takes place during every moment of circuit operation. Volumes cover Amplifier, Detector \& Rectifier, Oscillator, and Transistor Circuits. Save $\$ 1.85$. Order BEL-40, all 4 volumes, only
$\$ 9.95$

G TV Oiagnosis \& Repair. TDR-1.

 $\$ 1.50$ Radio Receiver Servicing. RS-2.. $\mathbf{2 5}$ TV Sern Dictionary of Electronles. DIC-2. TV Servicing Guide. SGS-I 2.956.95 Handbook of Electronic Tabies \& Foimulas HTF 2 2.00 Electronic Experiments a Proiects. ESE-1......... Tube Substitution Handbook TUB. 6 . 2.50 101 Ways to Uso Your VOM \& VTVM

Famous ABC's Books

Q Computer Programming. CPL-1 $\$ 1.95$ Electronics Drafting. ORA.1 $\$ 1.95$ Boolean Algebra. BAB-1 195 Transistors. TRA-1 1.25
1.95 Electronic Tes IEquipment.STE-1 .95 Q Electronic Organs. ECO-1

- HOWARD W. SAMS \& CO., INC. -

Order from any Electronic Parts Distributor or mail to Howard W. Sams \& Co., Inc., Dept. A-144

4300 W. 62nd St., Indianapolis 6, Ind
Send books checked above. $\$$ \qquad enclosed. Send FREE Booklist. Send Photofact Index.

Name
Address

City \qquad Zone \qquad State

THE MAN.OF-WAR!
What is it?
What can it do to you?
Read all about it in the
FEBRUARY
SCIENCE MECHANICS
On sale Jan. 1

BUILD THE...

POCKET

 міке
Just assemble

 ten dollars worth of parts and you can transmit your voice to any FM receiver up to 200 feet awayBy Mort Schultz

FCC Regulations mow permit wnlicensed flea-power transmissions on the 88- to 108-megacycle FM band. If you want to be the first to build your own FM Pocket Mike, follow the instructions in this article.
W
HEN you were on vacation last year, the Federal Communications Commission made publicly available the FM frequency band of 88 to 108 megacycles for short-range micropower communication without the need for a station or operator license. Now for the first time experimenters and just plain folk can build their own shirtpocket size FM pocket mike for less than ten dollars.

This new FCC ruling opens up infinite possibilities to the electronics experimenter. This was emphasized by the fact that immediately after the news was released several manufacturers announced that they plan to come out with a completely transistorized battery-powered FM wireless transmitter.

The FM pocket mike described in this article operated on a blank spot between 88 and 108 mc . on any FM tuner, FM table model or portable radio, or FM car radio. Your talk into the transmitter's microphone can be received loud and clear from 50 to 200 feet away.

It doesn't take a quick mind to discover the many uses capable of a low-powered FM pocket mike. One can, for example, use it as a PA system, you can use it as a burglar
alarm (a few of these placed around the house will permit you to pick up any sound on an FM receiver you have in the bedroom, for example); you can use it as a baby-sitter intercom (Suppose you are visiting the next door neighbor. The transmitter placed near baby's crib will let you pick up his cries and stirs on the neighbor's FM receiver). In other words, you can use this transmitter in most situations that call for a short-range transmitter.

Putting it Together. The FM pocket mike consists of two circuits-an r.f. oscillator that's tunable te the FM range between 88 and 108 me ., and an audio amplifier. Both circuits are placed on one circuit board and in a plastic box along with a battery, on-off switch, and crystal microphone. The list of

Coil L1 is wound on a $1 / 4$-inch dowel (top left) with \#16 enameled copper wire. A short length of tinned copper wire (top right) is soldered in place. The completed coil is shown at right. Details are given in text.

Use an alligator clip as a heat sink to connect wire tap from coil Ll to terminal on C5.

Phenolic board (left) serves to hold circuit parts. Notches provide room to locate battery and antenna coil. Holes may be pre-drilled.

Before mounting trimmer capacitor $\mathbf{C 5}$ (below), insert two fiber washers to serve as spacers between tuning capacitor and phenolic board.

materials you will need for the construction are given in the parts list.

Start by building the r.f. oscillator circuit. Make the oscillator coil LI, first.

1. Wind a length of No. 16 copper wire on a $1 / 4$-inch plastic or metal rod. Make eight full turns and spread the turns until the overall coil length is $3 / 4$ of an inch. The best wire to use is unenameled, silverplated stock since it cuts down on your work and makes a better high frequency coil because of its more suitable electrical qualities. However, the wire used to construct the model for Radio-TV Experimenter is enameled in order to show what has to be done with this type of material should you use it. The antenna end of coil L. 1 should be a straight piece of wire about 2 inches long. The other end should be a straight piece of wire about $1 / 2$ inch long.
2. Clean the enamel from the ends of the wire with emery cloth or sandpaper. If you use unenameled, silver-plated wire this step is not necessary. Just make sure the wire ends are clean.
3. Locate a battery voltage tap $13 / 4$ turns away from the antenna end of the coil, plus or minus $1 / 8$ of a turn. If enameled wire is used, file the tap with a square edge file down to the base copper. If the wire you use is unenameled and silver-plated, just locate the tap-you don't have to file it.
4. Solder a piece of No. 20 tinned cop-

FM POCKET MIKE

per wire that is 2 inches long to the tap. Refer to photos.

The next step is to make the circuit board. Use a piece of $2-1 / 2 \times 3-3 / 8$ inch paper-base phenolic material. A perforated circuit board, if available, can be used. Make a $3 / 4$ inch cut-out on one end of the board for the battery and a $4 / 8$ inch notch on the other end for the coil.

You can now lay out all the components, following the schematic diagram and photos to pre-drill the circuit board, or you can drill as you go along. Note that only holes for leads and mounting are needed. There are no terminal connections to make since point-to-point soldering will be used.

Drill the holes for component leads with a No. 50 drill. The two mounting holes for the variable trimmer capacitor are drilled with a No. 31 drill. Three holes for mounting the hoard to the case are also drilled using a No. 31 drill.

Begin mounting the components of the r.f. oscillator circuit in the hoard. Put the trimmer capacitor C5, into place first, as close as possible to the coil notch. Fasten the capacitor down with screws, placing washers (preferably non-metallic) beneath the capacitor to keep C5's rotor spring off the board.

Put the coil into its notch and solder it to trimmer capacitor C 5 . The short end of coil L 1 is soldered to the lower end of capacitor C5 and the coil tap is soldered to the trimmer capacitor's upper end (see photo). Allow the long end of coil L1 to extend beyond the board as the antenna.

When you solder the tapped wire to the capacitor, use a heat sink on that wire. An ordinary alligator clip will serve nicely. This prevents soldering iron heat from traveling from the point of solder back to the tap, which could melt the joint at the tap.

Now place the 2N1748A oscillator transistor Q2, adjacent to trimmer capacitor C5. After the transistor is in the board, bend its leads slightly to keep it from falling out. Do this to all components as you mount them.

Locate the emitter-to-collector coupling capacitor, C6, which should be as close as possible to the emitter and collector terminals of transistor, Q2. The remaining components for the r.f. oscillator transistor. These components are the 91 K base-bias resistor, R5; at this point, the leads of the r.f. oscillator circuit components are tied together on the circuit board's reverse side and soldered. Be sure to use heat sinks on Q2's wire leads.

Before soldering, wrap components' leads around the leads of other components in the same circuit (see schematic diagram). Point-to-point soldering is then employed as close as possible to the board. Caution: keep leads very short.

The R.F. oscillator section is nearing completion. Parts are pushed through pre-drilled holes and wired in place. Cut leads short.

When soldering, use an alligator clip as a heat sink between the point of solder and the end of the component. This prevents heat damage to the component.

Pre-Testing. At this point, the r.f. oscillator circuit is completed. It should now be powered and tuned. To do this, hook a clip lead from Bl 's negative terminal to Ll 's coil tap. Hook another clip lead from Bl's positive terminal to the junction of resistor R6 and capacitor C7.

Locate the r.f. oscillator close to a FM
receiver and tune the receiver to a blank spot around 88 mc . Adjust trimmer capacitor C5 by turning its screw until you hear a click in the audio output of the receiver. Make this adjustment with a non-metallic screwdriver.

Try successive points from 88 to 108 mc to insure that you can only tune the circuit throughout the entire FM range. Variations beyond the range of the FM band can be eliminated by either compressing or expanding r.f. oscillator coil L1.

Audio Circuit. Now, build the audio amplifier circuit, which includes a 2 N 414 transistor, Q1. Place Q1 near the input end of the r.f. oscillator circuit's 20 mf . input capacitor, C3. The transistor leads should be so oriented that the four resistor components in the audio circuit can extend to plus or minus supply leads. Refer to photos. In other words, components shouldn't be placed so their leads cross each other to get to their respective terminating voltages. The four resistor components are the 1.5 K collector resistor R3; 3.3K emitter resistor, R4; and a base-bias divider network made up of a 62 K and a 33 K resistor, RI and R 2 respectively.

Resistor R3 is bypassed by the 50 mf . electrolytic capacitor, C2. A 20 mf . input

CERTIFICATE OF EXAMINATION

I have examined this low-power communications device and find that it will comply with Section 15.205 of the Rules and Regulations of the Federal Communications Commission, provided that the antenna is a single element not more than $2^{\prime \prime}$ long and provided that the d.c. battery used to power this device does not exceed 9 volts. Further, the operating frequency shall be checked against FM broadcast stations of known frequencies after each frequency adjustment.

Date \qquad

Signature

of Technician
Address

Before you put the FM Pocket Mike on the air, the unit must be tested by a competent technician and certified by him that the device complies with Part 15 of the Federal Communications Commissions Rules and Regulations. Then, the technician must sign a copy of the Certificate of Examination (shown above) and cement it to the back of the FM Pocket Mike.
electrolytic capacitor, C 1 ; is tied to the basebias network, R1 and R2; and the free end is available as input to the audio amplifier. The crystal microphone is connected across the free end of Cl and the junction of R 2 , R4 and C2.

After putting the audio amplifier components in place, solder them together as you did with the r.f. oscillator circuit, making sure to use a heat sink.

Packaging. With the circuit board wiring completed, turn your attention to the plastic case. You could use the case from an old transistor radio, or you could use a plastic utility case as the author did. Place the circuit board into the case and locate the mounting holes (this, by the way, can be done either before or after the components

Completed unit showing location of all ports. Try to duplicate this parts layout to insure unit's proper operation and meeting the Federal Communications Commission rules.

are mounted). Drill the mounting holes into the case with a No. 31 drill. Also drill a

PARTS LIST

Q1—2N414 transistor (RCA)
Q2-2N1748A transistor (Philco)
R1—62K $1 / 2$-watt resistor (5%)
R2—33K $1 / 2$-watt resistor $(5 \%$)
R5— $91 \mathrm{~K} \frac{1}{2}$-watt resistor (5%)
R3-1.5K $1 / 2$-watt resistor (5%)
R4-3.3K $1 / 2$-watt resistor (5%)
R6- 50 ohm $1 / 2$-watt resistor (5%)
C1, C3-20 mf. $\mathbf{1 5}$-volt electrolytic capacitor
C2- 50 mf . 6-volt electrolytic capacitor
C4, C7-200 pf. 50-volt capacitor (Centralab Type TCZ or equivalent)
C6-5 pf. negative temperature coefficient capacitor (Centralab Type TCN or equivalent)
Ll-r.f. oscillator coil made from No. 16 wire (see text)
C5-6-30 pf. trimmer capacitor, (Centralab Type 827-C)
MIC.-Crystal microphone (Lafayette MS-108 or equivalent)
B1-9-volt battery (Burgess 206 or equivalent)
S1-Single-pole, single-throw slide switch
1—Battery clip for BI_{1} (Lafayette $\mathrm{CN}-193$)
Note: pf. equals mmf.
Estimated construction time- 3 hours.
Estimated cost-under $\$ 10.00$.

No. 31 hole to accept the antenna, fly-cut a hole in the case for the microphone, and notch out an area for on-off switch SI.

Now mount the wired board into the case using three $1 / 4$-inch stand-offs between the bottom of the board and the case.

The type of microphone you use in the FM pocket mike is left entirely to you. It can be either a crystal or magnetic kind and can run anywhere from $\$ 1.50$ to $\$ 10.00$. The author used an inexpensive Lafayette MS-108. The crystal microphone is connected across the free end of Cl and the junction of R2, R4 and C2.

Finally, put on-off switch $\mathbf{S} 1$ in place with the positive lead from the battery connect to one terminal another to the junction of R6 and C7 and the remaining terminal on SI.

Snap in the battery and close the case, but be careful. Make sure the leads of the microphone do not interfere with the battery.

Testing. Now turn on the transmitter and pick a spot near the center of your FM tuner dial to operate on a frequency that is not near any FM stations. Adjust C5 until you are on the frequency. While talking into the microphone, have someone tune nearby stations to be sure you are not interfering with them. Keep several feet away from the FM tuner or receiver when testing. Once operation is satisfactory, check with nearby neighbors for FMI (that's FM Interference).
(Continued on page 149)

By Jorma Hyypia

For several minutes I had been standing quietly in the hot New Mexico sun while staring at the impressive, cavernous Echo Amphitheatre that had been croded into the enormous cliff. I ther looked about for my companion who, I discovered, had wandered out of sight behind the surrounding shrubbery.
"Where are you?"' I called, raising my voice barely above normal conversation levels.
"Where are you?" a strange voice promptly mocked me.

So uncannily clear, and seemingly nearby, was the echo of my own voice. Of course I had anticipated hearing good echoes in a place called Echo Amphitheatre; but I had fully expected that I would have to shout to create the acoustic effect. On the contrary I soon discovered that words spoken at nearwhisper levels were echoed as distinctly as those that were shouted.

ECHO SURVEYING
 HOW WOULD YOU MEASURE THESE DISTANCES? (SEE TEXT FOR ANSWERS)

PROBLEM 4

After a half hour of talking, shouting, hand-clapping and general noise-making with my portable tape recorder taking it all down, I have become a confirmed echo collector. During the rest of the trip every cliff and canyon deserved at least one test shout. Not all produced echoes of the same quality as did Echo Amphitheatre, but there were plenty that created bona fide collector's items.

Equipment: You already have the most important piece of equipment. Your ears. Although this seems obvious, you will have to learn how to use them more efficiently by training them to be more responsive to echoes. This actually means that you should develop more critical listening habits.

If you want to collect echoes, you should have some sort of portable tape recorder. Other accessories such as parabolic reflectors are worthwhile refinements if you take echo collecting seriously.

How to Make Sounds: Your first im-
portant problem involves the creation of sounds suitable for echo collecting. You need a sound of sufficient short duration so that the returning echo does not overlap it, otherwise you would not hear the echo as a distinct separate sound.

The human voice is one of the least useful sounds for echo studies; it is too variable in quality and even the shortest shout you could produce lasts much too long for many echo tests.

A toy clicker ("cricket") that consists of a piece of flat spring steel that is bent with the thumb to produce a sharp click is a good short-duration sound producer. The sound from such a clicker usually falls to one-tenth of its maximum volume within 10 milliseconds. Such a click would permit the detection of an echo from an object five feet or more away; a 1 millisecond click would produce a detectable echo from an object six inches or more away.

However, such clicks may be impractical

Method of mounting heavy-duty dynamic microphone on cavernment surplus radar parabola reflector. Lower bracket adds to rigidity needed for the heavy microphones.

Echo surveying is quite simple and once you get the hang of it, you can rate as an expert. Answer details san be found on page 147.

Various methods of mounting speaker and microphones on brackets are shown below. Bracket attaches to center of parabola and positions the devices at the focus. Reading left to right: 5" speaker and the following are microphones: Spherex omni-directional, Shure ceramic, RystI DY21 dynamic, and Shure variable impedance dynamic. Steel bracket (very bottom) attaches mikes to parabola.

Recording echoes off a New Mexico canyon wall. The small microphone reflector (a photographer's light reflector) serves mainly to shield the microphone from exiraneous sounds and to increase directionality of pickup. $\mathrm{Re}-$ flector provides little sound amplification but is adequate in locations where noise is nil

A child's cap pistal (top) and a wood clap board (below) made from two hinged blocks of wood offer good sound for echo tests.

in tests involving long distances; louder noise makers may be required. The clapboard used on movic sets is easily made from two pieces of wood and a strap hinge. Slapping the upper board against the lower one produces a loud, fairly sharp loud sound. Also convenient to use is a child's repeating cap pistol.

If you have two tape recorders-or if you can work with someone else who also owns a recorder-one of the units can be used to create the original sound while the other is used to record the echo. This enables you to pre-record on tape such sounds as spark discharges (amplified as they are put on the tape) and other sounds not conveniently made in the field.

Whatever sound source you use, try to shield it as effectively as possible from the microphone used to pick up the echoes. The intensity of the recorded echo will always be considerably weaker than the original sound which is also picked up by the microphone. If the imbalance in intensities is too great,

Elaborate echo-study equipment is shown above operated by the author. On the right, a radar with speaker is used to beam sounds
taken from a pre-recorded tape. At left, microphone and reflector combination pick up echos for recording from distant cliff and is recorded.

Continuous loop of tape provides repeated, pre-recorded test sounds. In this case the sounds are fed to a small speaker mounted on a parabolic reflector in order to intensify and beam the sound into a desired direction. The reflector is a 25" parabola made by C. W. Torngren Co. located in Somerville, Mass.
the tapes will be uncomfortable to study later.

Recording Equipment: Echocs can be collected using almost any type of tape recorder although some will do the job much better than others. For example, an ordinary 115 -volt ac operated recorder must be used within extension-cord reach of a power supply; this greatly limits the echo-hunting prospects.

Obviously portability is a highly desirable feature. However most modestly-priced bat-tery-powered portable tape recorders utilize slow tape transport speeds and are intended primarily for voice recordings; they are not suitable for recording high fidelity music or such difficult subjects as bird songs.

Echo-collecting per se does not call for the ultimate in high fidelity because you will be working mostly with simple noises. But there is another, more important reason to use the fastest tape speed possible. The faster the tape moves, the farther apart on the tape will be the original sound signal and its echo. Measurement of this distance is the basis of calculating how far the echo-reflect-
ing object is from your position. The longer the sound-to-echo distance is on the tape, the more easily and accurately you can make these measurements.

If a tape recorder has a slow tape speed, but is otherwise suitable for field work, the tape speed can be stepped up. The tape is moved along by means of a rotating metal rod (capstan) against which the tape is pressed by a rubber roller. A metal or plastic sleeve fitted over the capstan-in order to increase its diameter-will increase the tape transport speed.

The circumference of the sleeve would have to be calculated and machined very carefully to obtain standard higher tape speeds such as $71 / 2$ inches per second or 15 inches per second. But this is not really necessary. You can use any arbitrary tape speed provided (1) you replay the tape with the same recorder and (2) calibrate the new tape speed. To calibrate, simply run through some tape for a minute and measure the length of tape transported; express this information in terms of inches-per-second.

Finally, you can provide at least a certain degree of portability to your ac operated recorder if you fit the family car with a converter that changes the 6 -volt or 12 -volt battery power to 115 volts ac. This will at least enable use of the recorder at such locations as can be reached by car.

Parabolic refiectors: Echo recordings can be made with no other equipment than a tape recorder and a microphone but the use of a parabolic reflector oflers certain distinct advantages. It will greatly increase loudness of the recorded echo and also eliminate much unwanted background noise. A second reflector can be used to good advantage to beam the original sound, pre-recorded on tape, toward the reflecting object.

The larger the refiector the greater sound gathering power it has; but of course prices go up commensurately. On rare occasions you can pick up a government surplus radar reflector at very small cost; a $28^{\prime \prime}$ diameter reflector used by the author cost five dollars at a New York surplus store.

Microphone mounts: None of the parabolic reflectors are provided with mounts to hold the microphones. The simplest way to atlach a microphone is to drill a $1 / 4^{\prime \prime}$ hole in the exact center of the reflector and attach a threaded rod to the hole with nuts. The microphone is fastened to the end of the rod
(Continued on page 147)

NEW Indoor Antenna Systems

Built-in tuned amplifiers pep up snowy pictures in the fringe suburbs

By B. G. Waterman

IN THE DAYS before these electronic marvels came into being, audiophiles had a choice. They could string a simple FM dipole (made of TV twinlead) behind or inside the hi-fi set, or they could run a twinlead wire up to the roof and there erect a fancy rig. Some of the more usual FM antennas used in the early days were named for their appearance-the turnstile, the "S," or the unipole.

Things have changed: New indoor FM antennas with built-in wide-band anplifiers have altered the picture quite a bit. However, let's face the facts! While the new units are far more effective in a fair-to-good signal area than the folded dipole ever was, they aren't much of a match for a good out-
door antenna array. Fortunately for the manufacturers, people who had settled for folded dipoles in the past, are more than happy with the new indoor antenna systems, while others, who had given up and erected outdoor rigs leave well enough alone.

The new antenna systems have one other added bonus, in that they are attractively designed, and available in a choice of colors too. There's no need to hide these little beauties inside or behind the cabinet! What's more, installation is simple. Just connect the antenna terminals of your FM tuner to the antenna wire leading from the unit, and plug its AC line cord into the switched AC receptacle on your FM tuner.

Look inside: Basically, these antennas

Antronics Multitron high-gain FM unit (above) uses printed-circuit board construction (below).

The Gallo Twin indoor television antenna (left) stands on TV set or hangs on wall.

Hookup of antenna system is easy. Just connect to set's antenna screw terminals.

New Channel Master indoor antenna (left) uses rabbit-ears and transistorized amp.
consist of a printed circuit board on which the antenna pattern itself is etched. The remainder of the circuit board is devoted to a high-gain, transistorized amplifier and its associated power supply. The circuit board is housed in an atractive cabinet, with only a piece of twin-lead fitted with spade lugs, and a power (AC) cord protruding. For the most part, antenna orientation has been completely eliminated as a problem.

So far, there are two companies that are currently producing FM/FM-Stereo antennas of this type. One is Gallo Electronics (12 Potter Ave., New Rochelle, N. Y.) and the other is Antronics, Inc. (309 Queen Anne Road, Teaneck, N. J.)

Gallo has several other products in the same line that will be of interest. One of these is the Gallo Twin indoor antenna, which somewhat resembles a picture frame with no picture inside it. It measures $1 \times 7 \times 9$ in. and supports itself on its own easel back.

The Gallo Color Master is usable on color or black and white TV, and also for FM. It measures the same as the Twin, but instead of an easel back, the base tapers to three inches. In addition to the antenna connection, this unit also has a power cord which must be plugged into a convenience outlet, and a switch on the antenna controls the power.

Never say, "Dic!" Rabbit ear antennas have served the consumer a good many years with success. The engineers at Channel

Master Corporation (Ellenville, New York) mated the telescoping dipole with a ransistorized signal amplifier to pull in signals from great distances. However, the Channel Master unit is designed for fringe areas only where present indoor dipoles fail to operate or produce snowy pictures. One unit, the A pollo, is designed to operate from 15 to 45 miles away from the TV transmitter.

In the FM reception department, Channel Master has come up a unit designed for the critical demands of FM stereo reception. Fringe reception up to 60 miles from the transmitter is possible with their indoor FM antenna with transistorized amplitier.

What to buy? This is the question that plagues all consumers especially in the TV and FM indoor antenna market place. Who should the buyer consult? Well, there is no one like the local TV serviceman. He is not only trained to advise you, but he, and almost he alone, is the authority in your locality on TV and FM signal propagation. Also, he has had experience installing and servicing many antenna TV and FM systems to know what is best for your set in your neighborhood.

If you want to eliminate the poor reception you get with your present indoor antenna setup, start thinking about an indoor antenna with built-in signal-boosting amplifier. You can replace whatever you are now using with a twist from your screwdriver. The whole job takes five minutes.

never sees the people he speaks to. In person, he is prone to blush, mumble, stare at his shoes and exhibit other nervous reactions.

While he may become embarrassed in the presence of people (especially girl-type people), dim the lights, put a microphone in his hand and talk to him about sloping Windom antennas or open-wire feed lines, and he'll wax romantic!

The average ham is usually wellfixed economically too. Girls, ham equipment is fairly costly if you go into it the way some of these boys do, and you can usually estimate the income of the ham by how he describes his rig. The nore elaborate it is, the more he spent on it; therefore, the more he had to spend.

The logical way to meet a ham is to become a ham yourself. Never underestimate the power of a woman ham. To demonstrate this point, visit a local (unattached!) ham and exhibit an interest in his hobby. Then ask him to let you send a CQ or general call. Try_to keep count of all the replies you get. 'Simpossible. Women are so rare on the ham bands that a torrent of replies is always elicited.

There have been many happy outcomings of boy-girl meetings on the ham air waves, and in many cases the offspring of such marriages become hams too. There's no age limit, either, at the top or bottom, so the wary sheham will be strictly noncommittal on the air until she can arrange an "eyeball QSO" (ham lingo for face-to-face contact). It's not hard to do, for hams are notoriously helpful, gender notwithstanding. A helpless YL-we'd better translate again: YL is a young lady; an XYL (or ex-young lady) is a wife-can easily mention on the air
that she's got a frammis in her receiver widget and, before she can sign off, the streets will be filled with helpful hams, soldering guns at the ready.

There also are other opportunities for the hamette (?) to meet other hams. There are ham club meetings (female hams are always made club secretary), field day outings, and hidden transmitter hunts. Here's where the female can meet the male on his own ground and earn his respect. There's nothing particularly masculine about pressing a microphone switch and making more contacts than the other fellow! The funny thing about it is that ham radio seems particularly well-oriented to feminine instincts. Even Morse code, long touted as difficult, is easier for the female, whose ear seems to be better attuned to this sort of thing. The ladies always pick it up faster and are more

YOUTHFUL hams tend to pursue their hobby rather than pursue girls. After all, a date could cost as much as a final amplifier tube.
accurate. What do you get when you marry a ham? For one thing, this guy isn't going to be chasing around the local rathskeller. He won't go out bowling. He'd rather sit in the attic and make contacts with his rig. He's also very easy to please. He ll hurry home at night (ta the transmitter and you, in that order) and will settle for a sandwich and coffee, sit up half the night talking to faceless voices and holding his ham-spouse's hand.

So how do you get into this air-waves-getacquainted club the quickest, easiest way without investing a lot of time and money? The following minimum requirements are all that are required for this happy husbandhunting hobby.

What It Takes To Get A License: Forget the rumors you've heard. Amateur radio is for amateurs, and no heavy engineering knowledge is necessary. True, you have to pass a test, but the test is designed only to make sure that you won't get into trouble on the air. There are three major grades of amateur license, each requiring a more stringent examination. Let's examine these classes of licenses and the privileges they extend.

The Novice License: The requirement is twofold. You must pass a Morse code test and demonstrate you can receive at a speed of five words per minute. Common five-letter
words are used and you must copy 25 consecutive letters, or one minute's worth. A written test is also required consisting of 20 multiple-choice questions. You must score 75% or better. The questions range in difficulty from "What is the abbreviation for Eastern Standard Time" to "What is a parasitic oscillation." This license is good for one year and is not renewable. The written test can be administered by any adult American citizen. The code test must be administered by a ham with at least a General Class license.

The Technician License: The code requirement here is the same as for Novice, but the written exam is the same as that given for the next higher grade-General Class. This ticket is good for five years and is renewable.

The General Class License: Here the code required is 13 words per minute and the written exam is a bit stiffer. You have to report to your local FCC office to take this test, but the license is good for five years, is renewable, and includes extended operating privileges.

But getting the license (or ticket, as the hams call it), is just half the battle, honey. You can't operate without equipment (as every smart girl knows). but don't let this
(Continued on page 125)

ON THE AIR, the ham is outgoing, friendly, even witty at times. But in company the same fellow will blush, mumble, stare at his shoes.

Putting the Middle Channel to work

What does one do with a derived center channel on a stereo system? The author powers a remote speaker

By Julian M. Sienkiewicz

Editor

MANY hi-fi fans do not plan to use the middle speaker output provided in almost all of today's stereo amplifiers. In many cases, the listeners are satisfied with their present two speaker setups now being used. As a result, a good monophonic sound source often remains untapped. Not so in the author's house. There, the middle channel is used to supply FM and phono programs to the kitchen where the better-half spends most of her listening time during daylight hours of the day.

The cost of putting your middle channel to work in the kitchen, den or workshop is not excessive and if you are a do-it-yourselfer, the chances are you have the $6-i n$. speaker, hookup wire and maybe the L-pad (to control volume) in the basement workshop. The speaker and L-pad are installed in a plywood baffle. The baffle wood and style are determined by the wife's style tastes and your pocket book. However, if you want to keep costs down, a baffle can be had for as low as $\$ 2.50$ or you could make your own.

Nothing for Nothing. The power output needed to drive the middle speaker is stolen from both power output stages of the stereo amplifier. So, if you are using a dual 10 -watt-per-channel stereo amplifier at full power, do not attempt to squeeze out more power to drive a third or middle speaker. The author's stereo amplifier is rated at 20 -watts per channel, and at normal room listening

PUT THE MIDDLE SPEAKER where it will do the most good. Wires can be hidden in wali or follow telephone wires.

HEATH AUDIO WATTMETER checks power delivered to a 16 -ohm load (built into wattmeter) from middle channel terminals of EICO ST-40 amplifier. Resistors load down outputs. Amplifier is driven by 1 kc tone from a test record.
levels for his high-fidelity system only five to eight watts per channel are used during peak loud passages. A third middle speaker requiring five watts of drive power would not overload this hi-fi setup.

A test hookup was made to determine exactly how much power can be tapped from the middle speaker output terminals when the two stereo channels are delivering equal amounts of power to equal loads. The first
series of tests were made using an EICO ST40 integrated amplifier whose speaker output circuits are typical of many other medium and high-power units. Two calibrated 16 -ohm high wattage resistors were used in place of the left and right speaker loads. An audio wattmeter with internally calibrated 16 -ohm resistor was used to make power measurements. A 1000-cycle tone signal was supplied to the input jack of the amplifier set for mono

MIDDLE CHANNEL SPEAKER TERMINALS

2 WIRE

SCHEMATIC DIAGRAM

IF BAFFLE PANEL is too thick, counterbore mounting hole and aftach dial plate to L-Pad with radio cement or Duco.
operation and the level controls were adjusted until the wattmeter indicated 10 watts output per channel. Then a third 16 -ohm high-wattage resistor was connected across the "middle" speaker output terminals. A slight power drop was noted in each channel. The level controls were adjusted again to bring the power output drop across the 16 -ohm left and right channel resistors back to 10 watts. Then, power across the middle

NO BACK PANEL NEEDED! Wire the L-Pad in place and just hang up. Wall behind baffle serves as back panel.
channel resistor was found to be 10 watts, too!

Obviously, each channel was supplying one half the power for the middle channel, and this was checked by alternately reducing the outputs of the left and right channels to zero. Lo and behold . . . the power output at the middle speaker output terminals dropped to 5 watts-which is the average power of 10 and zero watts.

Several other checks were made at the 7.5 -, $5.0-, 2.5$-, and 1.0 -watt levels on the EICO ST-40. Other power checks were made on a Heathkit AA-121 power amplifier at levels up to 25 watts. Results were always the same. The power available at the middle speaker terminals is always the average of the power delivered to the left and right channels provided the amplifier was not called on to provide 75% of its rated output.

Too Much Power. Since the power available for the kitchen speaker is much more than needed to drive a typical replacementtype PM speaker or even the $6-\mathrm{in}$. thin line speakers currently on the market, a high wattage resistor should be inserted in series with the middle speaker so that the L-pad volume control can be set for maximum loudness without overloading the middle speaker. This is a trial and error process, the results of which are determined by the amplifier and speaker you are using. However, a 10 -watt 50 -ohm resistor with adjustable tap should fill the bill in all cases. In fact, for very low settings of the amplifier by low power amplifiers, this resistor may not be necessary.

Hooking-up the Kitchen Speaker. This is easily done. Do the hard work first, and that is running a two-wire cable from the power amplifier to the site of the speaker in the kitchen. Use zip cord, TV lead-in wire, or just about anything that is available. Don't worry about power loss because you will need only a fraction of the total power avail-
able at the middle speaker terminals. Next the speaker and L-pad are mounted in the baffle. The threaded bushing on the L-pad may not be long enough to pass through the plywood of the baffle so some counterboring may be necessary. A drop of radio cement on the hardware threads will prevent loosening due to speaker vibrations. Wire the baffle carefully following the schematic diagram and L-pad pictorial drawing. Finally, connect the baffle to the two-wire line. At the amplifier end, be sure to insert the high-wattage resistor with the adjustable tap set at maximum resistance.

Now is the time to turn on the amplifier and set it to operate at normal room listening level you prefer. Then set the L-pad control for maximum sound. Not much will come out of the kitchen speaker until the tap on the high-wattage resistor is lowered. This is done to a point where the sound output is a notch or two above requirements.

MATERIALS LIST-MIDDLE CHANNEL

Size \& Description	
1	5,6 or $8^{\prime \prime}$ diameter speaker, $3.2,8$, or 16 ohms
1	4, 8 or 15 ohm L-pad to matcl, impedance of speaker selected (IRC LPA. LPB, LP15)
1	Baffe-wall mounted to house speaker selected 1
50 -ohm, 10 -watt resistor with adjustable tap 2-wire line-length as required Solder, radio cement, hookup wire, etc.	

5, 6 or $8^{\prime \prime}$ diameter speaker, 3.2, 8, or 16 ohms
4,8 or 15 ohm L-pad to match impedance of speaker 'selected (IRC LPA, LP8, LP15)
Baffle-wall mounted to house speaker selected
2-wire line-lenyth as required Solder, radio cement, hookup wire, etc.

COMPLETE BAFFLE is ready for wall mounting. Leads held in hand connect to middile channel output on amplifier unit. These leads should be at least 12 inches long.

The exciting world of short-wave radio is open to you when you put together the Knight-Kit Star Roamer all-band receiver

FOR the hobbyist secking a receiver somewhere between the 2-tube regenerative job and the high-priced SWL set, Allied Radio has introduced the Star Roamer. Covering 200 KC to 30 MC in five bands, it's replete with S-meter, noise limiter and nearly a dozen operating controls to please the most avid knob-twirler in search of DX. But how about the price, pegged at a piddling $\$ 39.95$? Is it possible to load deluxe features into an economy model and come up with a more than a fancy front panel? After assembling and checking a Star Roamer, it's evident that the kit achieves some solid successes. But the engineers have slipped in some "gingerbread," like the carmakers back in their tailfin days.

Constructing the kit requires care-there are plenty of coils and a big bandswitch
loaded with contacts to be wired. But the manual, which could be followed by a groggy chimpanzee, is a marvel of clarity. It avoids bloopers like wiring steps on one page, drawings on another. More features that coddle the kit-builder: wires are cut and stripped, hardware neatly divided into many packages, resistors and capacitors numbered and card-mounted. If you're not the duffer who cooks up cold-solder joints, the completed kit might pull in Bombay first try. The job takes about 15 hours for the meticulous builder, 10 if you're reckless.

As anyone who's strung a dial cord knows, it can be trickier than the porpoises at Marineland. The manual tells you how to do the job. However, play safe as we did by cutting the dial cord in the last step of installation, not the first.

Underside view of the chassis shows all the front panel controls neatly lined up on front
apron of chassis. Screw driver points to rear panel adjustment potentiometer for 5 -meter.

No doubt the completed kit turns in its best performance after alignment of the various coils and transformers. Though pretuned at the factory, these adjustments only get you into the ball field. Some "touch up" is needed to account for differences in wiring layout from one kit to another. The manual gives two approaches with and without test equipment. Since the SWLer may not have

Small parts are readily located on numbered cards. Hand holds factory-wound coils that are prewired before mounting in chassis.
an RF signal generator handy the second alternative is usually more attractive. The manual is on the right track in recommending the powerful, accurate (and free) reference signals emitted by WWV, the National Bureau of Standards station in Maryland. It could ease the alignment job for hobbyists spotted anywhere in the country. Our kit checked out nicely; none of the pre-set factory adjustments were more than a turn or so from the ideal settings.

After snaring local broadeast stations with a finger touched to the antenna terminals, we decided to give the Roamer a real workout on a big outdoor skyhook (a $60-\mathrm{ft}$. longwire). A raft of stations from Europe and the Mid-East barrelled in during early evening reception. We sampled the Voice of America's transmission from Greenville; N. C. (though they were beaming Count Basie toward Europe and Africa at the time). Some Air Force boys were busy with airtraffic control on one frequency, while Radio Moscow spouted news on another. Hams

For some kit builders it takes three hands to install a dial cord. In the Star Roamer it is
recommended that the dial cord be cut to size only after stringing large funing dial drum.
chattered on 40 and 80 meters, a shipboard station worked in the 2-3 MC band. A couple of hours of monitoring proved that sensitivity of the set was easily adequate for most shortwave listening.

After mounting speaker on chassis, cover the cone with cardboard to avoid tear damage.

The set's lack of an RF amplifier stage shows up in two ways. Up in the high band, sensitivity falls off. Copying ham stations on 10 meters, for example, is not easy. And hearing citizens banders proved successful only after a regular CB antenna was hooked in place of the longwire. But this is no problem on the international shortwave bands, mostly in the mid-bands where a good longwire pulls in just about everything. You can also expect some "images" due to the lack of an RF amplifier. It is possible that a strong signal will pop up on two places on the dial.

An interesting bit of legerdemain in the Roamer's circuitry is the sensitivity control, a front-panel knoh that gives the SWL'er three functions. For one, it's the BFO to provide the missing tone needed for code reception. To make audible the hiss-andpuff sounds of CW transmissions the knob is advanced until tone is heard. What occurs in the circuit is IF regeneration; the IF tube
(Continued on page 149)

Lissajous Figure Quiz

By Irvin L. Holt

LISSAJOUS figures viewed on oscilloscopes offer a very useful technique for measuring frequency of an unknown signal when a standard frequency is available. The unknown frequency is normally placed across the oscilloscope's vertical terminals and the known frequency is connected to the horizontal terminals. The scope is set to operate on external sweep and when the two frequencies are whole number ratios ($2: 1$,
$3: 2$, etc.), the 'scope displays Lissajous figures.

Each Lissajous figure indicates a frequency ratio; that is, the vertical frequency compared to the horizontal frequency. For example, if the vertical frequency is 240 cps . and the horizontal is 60 cps ., the Lissajous figure would indicate a $2: 1$ ratio. See if you can match the Lissajous figures with the ratios below. Answers on page 146.
5:1
4:3
2:1
3:2
1:1
4:1
5:3
3:1
5:2

NEWS

By G. Ronwell

REPORTER TOM LANKFORD uses CB equipment from his car to relay the fast-breaking news as it happens to Al Stantion at the city desk.

WHEN frenzied violence exploded in a southern city recently, it literally exploded! Destructive bombing took. place, and both the police and newsmen were vitally in need of the facts as they were happening. They needed the hot news hot!

Communications were important now. Police Intelligence Squad Detective Marcus Jones had installed six-channel citizens band equipment at a base station and in several cars. CB communications were needed because the high traffic on the department's only police frequency channel was too heavy and nore communications were nceded . . . at once!

While the use of CB helped, ordinary CB traffic on the six channels caused interference, and the police $C B$ units weren't much help. Detective Jones was in the process of ordering new crystals to change the channels police used and was faced with several days delay. Dwayne M. Berner, president of Regency Electronics, offered detective Jones the use of several of the new Regency Range Gain CB units. These units offer crystal controlled selections for all 23 CB channels, and

AL STANTON, Assistant Cify Editor. Mr. Stanton maintained his vigil at the CB rig, relaying, story material to the rewrite men, and directing other reporters to the scenes of action.

DETECTIVE MARCUS JONES poses beside his unmarked police car with the CB rig that helped police keep on top of the action. Units were placed on car seats for easy handling.

24 hours later, the CB sets were in operation.
The policemen found communications now greatly improved. They could move to any CB channel to avoid other traflic. What's more, this facility permitted them to change channels at will, and virtually prevent unauthorized monitoring of police traffic.

That was half the story. There was another group that was highly interested in what was happening where, when the city exploded. The newspapers had to follow the fast-breaking events, and keep the public advised of what was happening where.

The same CB equipment was put to use by one of the major local newspapers, and was used to good advantage. Reporters for other papers tried to use telephones, and were quickly overrun. Those who got too close to the action soon found themselves a part of it. Those who stayed well out of range couldn't get the story.

Teams of reporters were dispatched to the various centers of the city by CB radio, with the base station located at the newspaper's City Desk. As violent groups moved from place to place, reporters were warned in sufficient time to let them relocate to a safer position. As the violence passed a car, the car was dispatched to another area where it was about to flare up anew. Stories from the very centers of the activity were relayed to the newspaper's City Desk. As the story came into focus, the editors at the copy desk pounded out the facts with their typewriters.

Fed to the composing room, the linotype operators took over and soon the type was locked up into forms for the press run. Still the news kept coming in. And as it did, the editors incorporated the facts into late editions on the same day. After the regular press runs, the newspaper began to get ready a wrap-up story for their Sunday edition.

How it was done: The Regency Range Gain units use a double sideband reduced carrier to provide added range without exceeding the legal five-watt limitation. This extended range in the heart of a metropolitan city stood the users in good stead during the moments of peak action.

The news reporters had the CB units mounted under their auto dashboards, but the police preferred to place the units on the seat beside the officer. A window cowl antenna mount was used, and this added to the overall flexibility of the operation, for the units could easily be transferred from car to car at will.

As of this writing, there's no way to tell how the mob problems in this city will be resolved. One can but hope for the best. One thing is certain however, when it's finally over with. . . . When that last vicious bomb has been huried. . . . When the last vehement oath has been uttered, and when peace once again descends, you can bet that the news will be relayed by $C B$ radio!

Regency Range Gain CB unit mentioned in text funes in any of the 23 CB channels. Frequency synthesis provides crystal-control operation for the transmitter and receiver. A $3.5-\mathrm{kc}$. vernier control on the front panel can be used to zero in on those CB signals that are "off channel." Ready to operate, the unit sells for $\$ 269.95$.

WACKY WOMAN WiIH WOLLENSAK

PHyllis Diller (the Wacky Woman in this story) finds the life of a professional comic a fast one with many scenery changes. One piece of her luggage (she tours with 38) is a Wollensak tape recorder that is put to use daily for professional and amateur reasons.

Aside from entertainment purposes, Phyllis uses her Wollensak to tape letters to her 5 children. After her evening's final performance, she rehearses new theatrical material, writing 95 per cent of her own scripts with the aid of the recorder. As a silent secretary, the Wollensak took down the first draft of her new book entitled "Phyllis Diller Tells All About Fang."

At a closing night in Chicago, Phyllis gave a party and in no time the town's top talent were singing and talking into her tape recorder. Result: watch your local disc shop for a new Phyllis Diller album.

Equipped with sax and stereo headset, Phyllis Diller accompanies a Brubeck recording and records her debut solo.
"Get outdoors and record ants working," Phyllis tells us. But don't you believe it; she was working up a new act at home when the camera caught her.

1: THE SANBORN COMPANY'S Viso-Monitor in oction.
Now the doctors know all about seriously ill patients, thanks to . . .

Electronic Monitoring

By HARRIS E. DARK

LUB-DUB, lub-DUB, lub-DUB- 72 times a minute, 100,000 times a day, nearly 40 million times a year-the human heart chugs along, pumping 4,000 gallons of life a day to all parts of the body. Time was, heart failure from any cause had positive, decisive, permanent effect. Now in some of the more progressive hospitals, victims of heart failure are frequently saved by the pressing of a button.

The secret of electronic life saving is keeping a constant check on the patient's heart condition and several other vital body functions. A whole new science of electronic monitoring has been recently developed to do this. (Figs. 1 and 2.)

Electronic monitoring is an extension of the "intensive care" method of strict patient supervision which has been inaugurated by leading hospitals in recent years. When a patient requires constant bedside guard duty, this service is offered in an IC ward, superior in many respects
to having three private nurses, and at only a fraction of the cost.

In an IC ward two or more specially trained nurses are in attendance at all times, and more can be called in when needed. There is a supply of emergency drugs and appliances in the room and direct telephone lines to the various doctors. The doctor will receive information on special portable equipment (Fig. 6), or, if he is in his office, he feeds the signal directly into his electrocardiogram machine for study. Should consultation be desired, the same signal can be sent to a specialist by long distance telephone.

A typical system is the Medtronic cardiac monitoring system installed at St . John's Hospital in Springfield, Mo. Each of the indicating panels on the console shows, when a patient is connected to it, a lighted graph of heartheat rate. Each patient's doctor supervises the adjustment of the max-min settings.

2: SANBORN'S SYSTEM of monitoring. EEG is eleciroencephalogram, ECG is electrocardiogram.

of Body Functions

If the indicator should go above or below the preset rate, the appropriate part of the panel will light up red. In either instance, a discreet buzzer will sound. Thus any nurse in the room will know immediately if any patient is in trouble.

Strapped to each patient's chest is an unobtrusive transistorized transmitter (Fig. 7); connected to the transmitter is a pulse transducer similar to the pair of electrodes used in an ECG pickup. The tiny transmitter's signal is picked up by a receiver-transmitter attached to the bed. This allows the patient to be moved about on the bed without restriction.

The receiver-transmitter is plugged into the nearest 110 -volt electrical outlet; as is the monitor console. So long as they are joined through a common electrical supply system, Bed One will transmit to Panel One whether the bed is in the same room or several wings away.

For a detailed look at a typical monitor-

3: THE WIRELESS ECG preamp (lefl) picks up patient's heartbeat and transfers it to the monitoring equipment. Gadget on right converts the signal to an audio frequency and sends it into the phone mike.

4: MEDTRONIC console af St. John's, showing identical portable oscilloscopes (on top), each with its own eight-position "patient selector" switch box.
ing operation, let's say the heart of the patient in Bed Three, though still within the limits preset and dialed into the panel, has been showing considerable variation and deserves a closer look. The nurse dials the "patient selector" switch on a small portable oscilloscope (Fig. 3) and gets a small instantaneous picture of the Panel Three heartbeat as it would appear on an electrocardiogram, something like this:

If there is need to make a permanent recording of the heart action an ECG machine can be plugged into Panel Three to make an electrocardiogram on the spot.

According to Dr. Glenn O. Turner, prominent internist and heart specialist on the staff of St. John's, there is about a two-minute margin between the instant

5: POSITIONING of the counter-shock electrodes.

of heart block and the point of no return. For this reason monitoring, with its instantaneous announcement of cardiac arrest or even the threat of $i t$, gives the hospital personnel the benefit of the 120 second period of action during which the life may be recovered. Without such an efficient warning device, it is possible for an apparently peacefully sleeping patient to be in mortal distress too long before even the most conscientious personal attendant might become aware of the problem.
For years, lives have been "brought back" by injections of stimulant drugs such as adrenalin, which sometimes can boost the heart into action; and, if the cause of the failure has been removed, the heart may continue to pump normally. But drugs are not dependable in the correction of ordinary heart failure and if the problem is fibrillation, drugs are useless.
Ventricular fibrillation, a chaotic, twitching condition of the heart's individual muscle fibers, is often the result of accidental electrocution, but the deadly spasms can also be caused by body ailments such as occlusion from a blood clot.
Strangely, a powerful electrical shock, expertly administered with delicate, precise equipment, will effect a cure.
Countershock to arrest ventricular fibrillation can today be applied either internally or externally. In an operatingroom situation where opening the chest by surgery is not so difficult, the current (1 to $1 \frac{1}{2}$ amps. at $120-135$ volts for a few tenths of a second) may be applied directly to the surface of the heart. The open-chest

6: PATIENT with Medtranic chest strap that sends signals on heartbeat, temperature, and respiration rate. Receiver-transmifter under bed receives signals from chest strap and sends them to the console.
method has the advantage of allowing the surgeon to squeeze the heart with his hand to maintain the circulation of oxygenated blood (while artificial respiration is also being administered) until the heart is restarted and on its own again. This method has been widely used since 1947 and has been instrumental in saving 25% of patients suffering from cardiac arrest.

But for outside the operating room where surgery is not feasible, an electrode is placed at the neck (just under the

Adam's apple) and another at the apex of the heart (just under the left breast). The 480 volts will send five amperes through the body, with 1.5 amps . of this current flowing longitudinally through the heart; this will bring the twitching fibers to rest. A further, and undoubtedly more important, development is the portable defibrillator. The latter has been applied to 12 patients at Johns Hopkins Hospital with 100% success.

One further question in the matter of patient resuscitation: Once the heart is defibrillated but fails to start, or if it was not in fibrillation but had merely gone into quiet cardiac arrest, how is it restarted?

For this there is the electronic pacemaker (Fig. 4) that can supply, internally or externally, a regular, timed current to the heart muscles which is very similar to that normally produced by the heart's own pacemaker. In extreme cases, a completely portable pacemaker about the size of a cigarette lighter can be implanted in the patient's abdomen. A minor incision every three to five years to make a change of batteries is all the maintenance required.

Each new improvement in the electroinspection of the human body, lends greater accuracy, more convenience, increased lifesaving ability to the marvelous tools now in the grasp of modern medicine. As one observer put it the other day, "It's getting harder and harder to die."

7: IYPICAL Sanborn 760 series setup of electronic monitoring and recording equipment for an operating room.

HERE'S a novel photocell relay that combines excellent sensitivity with extreme simplicity by using a neon bulb as an electronic switch. Although it uses neither vacuum tubes nor transistors, its sensitivity ranks with the best of these types. As an
added bonus, the circuit offers both latching relay action (relay remains closed after actuating light source is removed), or automatic recycle (relay opers after actuating light is removed):

Another nice feature of the photocell relay

All the parts for the pholocell relay are mounted on one half of a Bud chassis box. Wiring is not critical, however a neatly wired unit will work the first time without the need for annoying trouble shooting.

Top of unit mounts sensitivity adjustment and terminal block for external connection.

Greek letter lambda inside photocell PC symbol indicates the light-sensitive device.
is that it draws essentially no current from the power line during standby periods when the relay is not energized. This means that the unit can be left permanently connected to the power line without fear of running up

[^2]the electric bill. The operation of the circuit is such that the relay is energized in a "snapaction" fashion, thus assuring its positive operation and maximum contact life.

Aloout the circuit. The heart of the unit is the NE-77 neon lamp which resembles a standard NE-2 with a third electrode added between the two existing electrodes. The operation of the NE-77 is like an electronic switch. A control voltage applied to the neon bulb's center electrode will cause it to fire, allowing current to thow between its two outer electrodes.

Let's first assume that the RESET switch, S2, is in the open position. With power applied to the unit, the diode, D1, provides pulsating DC voltage across the two outer electrodes of the NE-77 via the relay coil, K1. This same pulsating DC appears across the voltage divider formed by the series connected photocell, PC, and sensitivity control, RI.

With no light striking the photocell, PC, the sensitivity control, RI , is adjusted to the point where the voltage applied to the NE-77's control electrode is not sufficient to fire the NE-77. When the PC is illuminated, its internal resistance lowers, firing the NE-77 . . . this in turn energizing the relay. The capacitor, C 2 , connected across the relay coil, KI, prevents the relay from chattering as pulsating DC is applied to K1.

When the RESET switch S_{2}, is in the (Continued on page 126)

Customized into a colonial-period dry sink, this novel high-fidelity stereo installation whets the desire and imagination of the home designer

STEREO Goes"Early American"

By Walter G. Salm

STEREO equipment and early American furniture can mix-provided the components aren't sitting out on open shelves à la Danish modern. The object is not to hide the equipment, but to conceal it in an unobtrusive, authentic piece of furniture.

Many items of early Americana are either too big or too small. The ideal piece should be able to accommodate a reasonably powerful stereo amplifier, an FM stereo tuner, a turntable and a tape recorder. Trying to stuff the speakers into such a cabinet is sheer folly and would partially defeat the purpose of buying quality components in the first place.

What is necessary here is an equipment cabinet-a stereo center that will be authentic early American on the outside and will have a custom-built appearance when opened.

Dry Sink. A furniture piece that lends itself ideally to this application is a small dry sink. Originally used in kitchens in colonial homes, the dry sink is now a fully accepted piece for dining and living rooms. The one shown in this article is the Agawam dry sink (Catalog No. GV 145 U) available unfinished for $\$ 65$ (express collect) from

The dry sink will house a complete stereo system, including an 80 -watt amplifier, FM stereo tuner, manual turntable and recorder.

Sturbridge Yankee Workshop, Brimfield Turnpike, Sturbridge, Mass. If you would like to build your own dry sink, then pick up a copy of the new Furniture Handвоок, a Davis Publication, No. 666 for the complete plans and "how to" information.

The components used in this installation were chosen on a basis both of high performance and reasonably compact size. When choosing a record player, remember that an oversize turntable just won't fit in the space provided. Yet a unit such as the Thorens TD-135 offers big-turntable performance and still remains well within the space limitations imposed by a cabinet installation. You probably know from experience that a quality manual turntable is usually very difficult to hide and still use conveniently.

The tape recorder is the Wollensak T-1580 which rests on a sliding platform. The platform makes the entire unit readily accessible even though it's on the bottom shelf.

The amplifier and FM stereo tuner are the H. H. Scott LK-72 and LT-110 and come in kit form. Both are the same size in front, so the same template can be used when making the trim panel cutouts. The LK-72 is an 80 -watt amplifier and like all power amplifiers, must be adequately ventilated. One method of assuring sufficient cooling is the use of an exhaust fan such as the Rotron "Whisper Fan." Mounted at the top rear of the cabinet, the fan will move a large volume of warm air, helping to create convection currents. The cabinet also includes cool-air inlets located behind the amplifier and tuner.

Adding Shelves. The first step is to add two new shelves to the cabinet. Since these will be hidden by the front trim panel, $3 / 4$ inch plywood can be used. A thinner board would not adequately support the weight of the amplifier.

The doors will have to be removed for staining, and it would be just as well to remove them at the outset, since this will make it easier to work on the interior. Also, remove the magnetic latch.

For the amplifier and tuner shelves, cut two pieces of $3 / 4$-inch plywood $191 / 2^{\prime \prime}$ wide x $141 / 2^{\prime \prime}$ deep. Drill holes in the shelves as required. Refer to the diagrams.

Cut two wood blocks from $3 / 4$-inch scrap, drill and countersink two $1 / 4$-inch holes in each, and mount them on the right wall. These blocks will brace the right side of the amplifier shelf. Mount the shelf flush with

STERED
 Goes"Early American"

the rear of the cabinet. Mark off the underhang of the built-in half-shelf. This will have to be cut out to make room for the trim panel. Remove the shelf and cut a notch in the built-in shelf. When cutting the notch, be careful not to ruin the saw blade on the nails holding the shelf to the center post in front.

The height of the lower shelf is optional, but it must be low enough so the tuner has enough "breathing room" above for ventilation. Cut four scrap blocks to size-all equal in height. A single screw through the

Shelf for the amplifier is cut from $3 / 4$-inch plywood. One-inch holes are for ventilation purposes; $3 / 4$-inch holes allow cables to pass between shelves to intercionnect components.

The details for the trim board (left) are determined by the author's hi-fi equipment. Except for outside dimensions, holes should be cut and drilled on location for an exact fit. The lower detail (right) shows how to countersink holes and avoid splinters when drilling.
plywood into each of the four legs will be sufficient to stabilize the "table" that this shelf will look like.

At this point, if you want to mount the amplifier and tuner on the shelves, rather than have them just rest on them, mark off the hole locations on the shelves. These should line up with the holes on the bottom plates of the amplifier and tuner.

Trim Panel. Once the shelves are in place and the notch has been cut out of the halfshelf, make a template for the trim panel. Use any convenient large piece of paper, such as brown wrapping paper. The outside dimensions will be $191 / 2^{\prime \prime} \times 243 / \mathbf{s}^{\prime \prime}$. Remove the knobs and the brass trim plates from the tuner and amplifier and place them on the shelves and tack the template in place with tape. Cut square holes as shown in the trim panel drawing.

Once you have the template exactly right, use it to lay out the holes on the wood

panel. The type of wood you use will depend on what kind of finish you want it to take. If you want it to match the dry sink finish, use a clear pine. Knotty pine would be a closer match, but some knots may lie right on the lines that have ta be cut, making a neat job very difficult.

The amplifier shelf, cut from $3 / 4$-inch plywood rests on two scrap wood blocks and on the overhang of the turntable shelf at the left.

Shelf for the FM tuner is cut from $3 / 4$-inch plywood. Scrap wood blocks raise the "table" approximately five inches; height is optional.

For the panel, glue several pieces of clear pine together, clamp and let dry overnight. If you have a power saw, make the panel somewhat oversize. and trim it to the $193 s^{\prime \prime}$ x $243 / 8^{\prime \prime}$ size after it dries, to get the best fit.

An electric sabre saw is the most convenient way of making the rectangular cutouts. The edges won't be exactly even unless you have an exceptionally steady hand, but clear pine is very soft and easy to sand-and easy to ruin with marks, so be careful when you work it.

Drill two holes about midway between the two cutouts, the right hole $1 / 2^{\prime \prime}$ diameter, the left hole $11 / 16^{\prime \prime}$ diameter. These are for the main power switch and pilot light. If you are using $3 / 4$-inch wood for the trim panel, then cut a 1 -inch diameter hole partway into the panel from the rear, since the switch and pilot light assemblies will not reach all the way through a board this thick. Be careful not to drill all the way through the panel.

Mounting Accessories. Remove the two shelves for the amplifier and tuner. Take the paper template and fasten it to the thin plyscore board on the rear of the dry sink directly behind the space where the amplifier and tuner will be located. Mark off square cutouts from the template. They don't have to be as high as the trim panel cutouts, but should be the same width. Remember, you will have to get your hand through these cutouts to attach plugs and cords.

Select a position for the exhaust fan. The best spot is flush with the top of the cabinet
interior approximately in the center. Outline the inside of the fan on the plyscore with a pencil and cut out. Mount the fan, using the hardware and the foam vibration pad provided. In spite of the fan, the amplifier is going to throw off a lot of heat and this may affect the finish of the dry sink area directly above. To avoid this, take some corrugated heavy aluminum foil-the type that is ready-cut and corrugated for use in kitchen broilers. Tack two sheets of this to the top of the amplifier compartment. Do not use this foil unless you use an exhaust fan.

Next, drill holes in the plyscore for the T-pads. These are a special kind of local volume control for each loudspeaker and will be a great help in adjusting the stereo balance when unmatched speakers are used or when room acoustics affect the balance. Once these T-pads are installed and adjusted properly, you will probably never have to move the balance control off its center posi-tion-the most efficient way of using a stereo amplifier. The T-pads are available from Lafayette Radio Corp., 111 Jericho Turnpike, Syosset, N. Y. (16 -ohm pad, VC-52; the 8ohm pad, VC-51; price is $\$ 3.85$ each, and two are needed for stereo.)

Tape Recorder. In the installation, the vertical position of the tape recorder wasn't critical, since the Wollensak unit used takes up relatively little room. To be on the safe side, mount the pads near the shelf at the top of the tape recorder compartment. Drill two $1 / 8^{\prime \prime}$ holes for the mounting screws and a

STERED

Goes"Early American"

$1^{\prime \prime}$ hole for the shaft of the pad. The threaded shaft is too short to pass all the way through the plyscore and this $1^{\prime \prime}$ hole will permit mounting directly on the brass plate itself.

Wire the pads using a color-coded pair of wires and maintain similar connection points for both speakers so they will be in phase when the wiring is completed.

Mount a five-terminal board on the back of the cabinet with nuts and bolts as shown and drill two $1 / 4^{\prime \prime}$ holes just below the terminal strip for wires.

Staining the Cabinet. At this point, you should stain the cabinet and all inside surfaces that will be exposed. Stain the trim panel and the tape recorder platform. Whatever else you intend to do in the way of finishing the wood, such as applying a hard wax surface, should be done at this time.

When the finishing is completed, remove the amplifier and the tuner shelves completely. The front support block for the amplifier shelf will have to come out, too, since it will be in the way.

Mount the power switch and pilot lamp assembly with red jewel.

Use heavy-duty zip-cord for all the AC power cable runs. Drill a $1 / 2^{\prime \prime}$ hole in the plyscore back near the bottom of the cabinet on the FM tuner's side. Feed the zip cord through the hole so about 6 feet protrude outside the cabinet. Tie a loose knot in the zip cord inside the cabinet and place one large BX cable staple in the cabinet floor between the knot and the hole. The staple shouldn't be hammered down too tightjust enough so the knot in the cord can't pull through. Install an AC plug on the loose end.

Run the cord end in the cabinet to the trim panel and wire in place. A length of zip cord goes from the pilot light terminals to the AC receptacle on the FM tuner shelf; another length from there to the second receptacle on the rear of the turntable shelf. Solder all connections, even where screws are provided in the receptacles. This is a permanent installation and it will be very annoying if any wires come loose later.

Trim the AC cord from the fan so it will reach the receptacle with a little slack left over and attach an AC plug. Plug it into the receptacle directly below it.

Wire the interior of the dry sink (leff) prior to installing the hi-fi components. Wiring detail for switch and pilot lamp is shown at the bottom of this page. The pilot lamp is optional.

MATERIALS LIST

Cabinet
1—unfinished dry sink (no. GV 145 U. Sturbridge Yankee Workshop, Brimfield Turnpike, Sturbridge, Mass.)

Components \& Parts
1-80.watt stereo amplifier kit, H. H. Scott LK. 72
1-FM stereo tuner kit, H. H. Scott LT-110
1-Thorens TD-135 integrated turntable \& arm
1-walnut base for turntable
1-magnetic stereo cartridge
1-Woliensak T- 1580 stereo tape recorder
1-Rotron Whisper Fan (Lafayette PK-328)
1 pr.-15-inch drawer slides
2-T-pads 8 or 16 ohms
1-5-terminal Cinch barrier strip
1—neon lamp assembly w/resistor (Dialco 95408X-931)
1-NE. 51 neon pilot bulb
1-s.p.d.t. toggle switch
Miscellaneous
2 sheets-corrugated broiler aluminum foil 2-AC plugs
12 ft .-rubber lamp (zip) cord, heavy duty 2 - AC receptacles (3 -outlet baseboard mounting type) 1—BX staple
12-llathead woodscrews, $11 / 4^{\prime \prime}$
12-tarpet tatks
7 ft . 300 -0hm flat twin-lead (TV) wire
Wood
1—Clear pine, glued, $193 / 8 \times 245 / 18^{\prime \prime}$
2—Plywood, $3 / 4^{\prime \prime}$ stock, $191 / 2 \times 11^{\prime \prime}$
2—Plywood. $3 / 4^{\prime \prime}$ stock, $191 / 2 \times 141 / 2^{\prime \prime}$
1—Plywood, $34^{\prime \prime}$ stock. $131 / 2^{\prime \prime} \times 11^{\prime \prime}$
1—Plywood, $3 / 4^{\prime \prime}$ stock. $131 / 2^{\prime \prime} \times 141 / 2^{\prime \prime}$
1-Clear pine, $11 / 4$ to $11 / 2 \times 245 / 16^{\prime \prime}$ (see text)

Place the shelves behind the trim panel by sliding them in from the left side. First replace the wood block amplifier shelf support that was removed. You can reach through the trim panel cutout to fasten it. The same will be possible for screwing down the shelf itself. The tuner shelf is another matter. After you have shoved it into place, a long arm and a long screwdriver will be necessary to place the wood screws.

After the trim panel is in place, there will be a gap between the front of the panel and the center post at the front of the cabinct. You can do two things, either leave it the way it is, or attach a strip of wood to block the gap. Cut a strip of this stock 24-5/16"

TO AC PLUG

Wire the T-pads (there is one per loudspeaker channel) as shown above.
long and from $11 / 4^{\prime \prime}$ to $11 / 2^{\prime \prime}$ wide, depending on how much air space you have to fill. A single countersunk woodscrew in the center of the strip will attach it firmly to the side of the notch in the half-shelf. Before attaching to the cabinet, you will want to stain and wax both sides of this trim strip. Be sure to drill the hole full size to avoid splitting.

Tape Recorder Slides. Remove the stop pins from the two drawer slides (Lafayette Radio catalog No. ML-34, $\$ 1.75$ per pair). Pull the slides apart.

Turn the tape recorder platform upsidedown and fasten the two smaller (inside) slider bars to it as shown in drawing. The ends with the holes for the stop pins should be flush with one end of the wood platform. This end will be at the rear of the cabinet. Be careful to mount these pieces perfectly parallel.

Using the position of these slide bars as a guide, mark off center lines for the outside tracks on the bottom of the left side of the cabinet (the tape recorder compartment). Mount these tracks, again being careful to keep them perfectly parallel. In mounting all of this hardware, use shallow round-head screws that are about $1 / 32^{\prime \prime}$ diameter smaller than the holes in the metal.

Insert the platform's runners into the tracks and shove it all the way to the rear of the cabinet. If it doesn't slide freely, look down the tracks to see which elements are out of skew. Then remove the platform, loosen screws where needed, and adjust the tracks or runners.

Re-insert the runners and again shove the platform all the way to the rear. Then move
(Continued on page 149)

BEEN having trouble trying to operate that transistor amplifier from a crystal microphone? Does that portable all transistor phono amplifier you've just designed have inadequate bess response when used with a crystal or ceramic phono cartridge? Is the output voltage from both crystal microphones and phono cartridges much lower than normal when fed into a transistor stage? Your affirmative answer to these questions indicates that you are suffering from the low input impedance blues.
The problems outlined above are due to the fact that any conventional transistor amplifier stage has a quite low input impedance. While it is true that certain circuit arrangements can raise this impedance somewhat, it still falls far short of the recommended load for crystal or ceramic microphones or phono cartridges. These devices are designed to operate into load impedances in the neighborhood of one megohm or more . . . lower impedance greatly reduces their output voltage level and restrict frequency response.

The little FET (field-effect transistor) impedance matching circuit used in the potted preamp neatly takes care of this impedance problem, while also providing a sizeable bit of gain to boot. The potted preamp is designed to be placed between the output of a crystal mike or phono cartridge and the low impedance input of a standard transistor amplifier. While the preamp is shown as a separate, encapsulated unit in the accompanying photos, there's no reason at all why it can't

The preamp circuit has only four terminal points; high impedance (Z) input and common ground, -9 -VDC input and signal output.
be built right into either an existing amplifier or an amplifier under design. The little unit can also be used to advantage with a conventional vacuum tube amplifier as it has a fair amount of voltage gain.

Circuit Operation. Signals from either a crystal or ceramic phono cartridge or microphone are fed to the gate electrode of the field-effect transistor, Q1, connected as a source follower . . . this is similar to a vacuum tube cathode follower, to achieve the required high value of input impedance.

Signals appearing at Q1's source electrode are applied to the base of Q2, via the blocking capacitor, C2. Q2, is operated as a conventional common emitter amplifier stage to boost the signal before it is applied to the output. Resistor R3, provides proper base bias for Q2. The preamp's output signal is

POTTED PREAMP

shake the lo-impedance blues

with this hi-Z microphone

 and phono preamplifier

By John Potter Shields

Practically indestructible, the parts for the Potted Preamp are held in place by a clear, transparent plastic making an easy-to-use component.
C1-5 mf., 15-volts DC electrolytic capacitor
Q1-TIX881 (Texas Instrument)
Q2-2N1371 (Texas Instrument)
R1-2,200,000-ohms $1 / 2$-watt 10% resistor
R2-2,000-ohms $1 / 2$-watt 10% resistor
R3-330,000-ohms $1 / 2$-watt 10% resistor
R4-3,300-ohm $1 / 2$-watt 10% resistor
1 lb -Castolite " X " liquid plastic \#L-1
1 unit-Castolite "X" hardener \#G-2
(The Castolite products are available from The Castolite Company, Woodstock, Illinois 60098 for $\$ 3.30$ postpaid.)
taken from the collector of Q2. The potted preamp is powered by any convenient 9 volt source such as a miniature 9 -volt battery of the type used in pocket-portable transistor receivers. Current consumption is slight so battery life will be most reasonable.

Construction Details. The unit was encapsulated in a block of clear plastic to protect it as well as providing an attractive package. The material used to pot the completed preamp is known as "Castolite", which is manufactured by the Castolite Company, Woodstock, Ill. This preparation can be ob-
(Continued on page 124)

By Howard S. Pyle, W7OE

HAVE you been resigned these many years to distorting your body while making an accurate adjustment on your receiver dial? You don't need to . . . why "dip the body" when you can get the same results by tilting the receiver?

Quite a few receiver manufacturers have adopted an innovation that lets you install a receiver on a flat surface, such as a desktop, and then tilt the front of the cabinet so that the panel is more nearly in the direct line-of-sight of the operator. Some receivers have a metal foot hinged along the bottom front edge of the receiver that can be snapped in place. Others furnish large rubber feet on the bottom front of the cabinet and small rubber feet on the rear.

Parallax is the cause of many incorrect dial settings or readings. Look at your receiver's dial at a distance of 14 inches and move your head from side to side. Unless the dial pointer is resting right on the dial face, this head motion will cause the dial indication to change with head position. This effect, called parallax, can be eliminated only by looking at the dial head on. To help keep your eyes directly over the pointer, it is wiser to tilt the front panel up to you and not have to bend for each dial setting.

You can tilt your receiver by replacing the two front rubber-bumper feet with a pair of a larger size. This will tilt the front panel

How far you tilt back the front panel of your receiver is best determined by you at the listening station. A rubber foot (left) does the

SLANT

on receivers

upward and back so that you may easily see the settings of the various dials and controis. If you are a stickler for even greater accuracy, you can buy, for a few cents, a couple of rubber-tipped door-bumpers at your local hardware store and use these in place of the front rubber feet.

Try this stunt; you'll find tuning and adjustment of controls infinitely easier, not only with receivers but with ham transmitters as well where you may want to make frequent quick accurate adjustments.

job nicely for short lifts. A rubber tipped doorstop (right) gives lifts up to three inches. Bench with built in tilt top is another idea,

Special Section:

NEW ELECTRONIC KITS

By Tom Kneitel

ARE you a newcomer to electronics? Do you find electronics gear amusing but confusing? Do you want to expand your practical knowledge of electronics on a tight-as-a-drum budget?

Or, are you one of those pioncer do-ityourself he-men who builds all needed electronic gear "from scratch," going so far as to wind your own transformers?

Whichever of these two fellows you might be, you owe it to yourself to take a close look at 1964's electronic kits, because the kits which are available today are vastly dif-
 ferent than those which were on the market only a few years ago. They are easier to build, less expensive, styled to the times and (to the surprise of many) actually fun to build.

Yes, 1964's kits make full use of the most recent electronic innovations, plus the best of the ideas which have turned up in the past few years. A look through the new kits shows you printed circuit boards, transistors, pre-wired modular circuits, and even Nuvistors. The exterior styling of the new kits shows a stepped up campaign on the part of kit manufacturers to make their wares attractive to the "little woman" of the house.

Decorator words like "lowboy," "oiled walnut finish," and color combinations of antique white and gold, or chrome and black are part of the 1964 electronic kit scene.

If you haven't been following the skyrocketing of kits, perhaps a few facts might be in order at this point. The cost of a kit averages about 40% less than the same unit factory wired, or a similar factory wired unit
not available in kit form; most cost less than if you went out and bol ht the components individually. These factors are some of the major reasons behind the substantial increases in kit sales recently. Manufacturers agree on this, however they add several other reasons which they feel are of equal importance.

The 1960 's are a period of leisure time;

A. The Fisher KM-60 stereo multiplex FM tuner is a kit product with commercial characteristics and costs $\$ 169.50$! B. The Knight-Kit model KG870 is an integrated stereo amplifier for $\$ 99.95$. C. Lafayette has this all-transistorized stereo amplifier kit for \$134.50. D. Conar Instruments lets you build a TV set, \$135.
A. Conar model 219 all transistor portable, $\$ 29.95$. B. Progressive Ed-U-Kits is really an educational unit, you can build all 20 radio circuits, $\$ 26.95$. C. Conar model 211 VTVM boasts 6 -inch meter, $\$ 29.95$. D. Conar model 220 tube tester, cathode conductance type, $\$ 47.75$. E. EMC model 205 tube tester, emission type, $\$ 36.20$. F. EMC model 109 Volometer, VOM, comes in kit form for only $\$ 19.25$. G. EMC model 212 transistor analyzer kit, costs \$13.50, tests transistors and diodes.
people are generally working fewer hours per day than they were in the '50's. They have more spare time available. Spare time means hobbies, and in the rocket-and-nissile 1960 s, "hobbies" almost invariably means electronics in one form or another-hi-fi, ham radio, Citizens Band radio, or just experimenting. This, coupled with the natual desire to broaden our understanding of the sciences, has created an unprecedented demand for kits. And what a demand!

There are kits today which cover every conceivable segment of electronics. You can build yourself all manner of hi-fi gear, even a thousand dollar electronic organ. Or you can whip logether a depth finder for your boat, a clock-radio, a computer, a radio transceiver, a color TV set, or any of a num-

A. A Knight-Kit (Allied Radio) transistor code oscillator, \$7.95. B. Knight-Kit "10-2" C8 Tester, \$25.95. C. Knight-Kit "Star-Roamer" SW Receiver, \$39.95. D. Dynakit FM-3 stereo multiplex tuner kit, $\$ 98.95$. E. Lafayette model 174 vacuum tube volt meter kit, \$44.50.

The only things you will need to construct most electronic kits are: pliers, wire cutters, a screw driver, a soldering gun or iron, and some solder. The kit comes with everything else, including all necessary wires, a punched chassis, switches, tubes or transistors, a cabinet, and all resistors, capacitors, and other components. Some even have the solder.

Usually the resistors and capacitors are mounted on cards with the value of each individual component clearly indicated to reduce any possibility of your putting the wrong component into the wrong part of the circuit.

The instruction manual will show you, in both schematic diagrams and progressive pictorial wiring illustrations, just how the piece of equipment is supposed to look during each stage of its construction. The instructions themselves are usually in step-by step fashion, with color codes used where possible to provide for maximum identification of the various circuits in a particular piece of equipment. The manual will also explain, in detail, how to solder correctly. Many manuals also discuss the electronic theory of the circuits.

The thought occurs that you may be ask-
ing yourself, "How long does it take to build a kit?" Well the answer depends on several variables such as the nature of the kit, the experience of the builder, and the time-perday spent on construction.

Some small kits can be finished off in less than an hour, some big kits may take weeks. Actually it's a peculiar question to ask because kit building is relaxing and is a worthwhile way of spending your time. You wouldn't ask how long it takes to read a book or listen to a symphony. Think of a kit as an equal form of relaxation.

Many kits which might at first look like lifetime projects offer unexpected shortcuts. These include printed circuit boards which contain a great deal of the circuitry, prewired on the board. It is then necessary to place the board on the chassis, wire it into place and add a few components by "point-to-point" wiring to complete the unit.

Admittedly, 1964's kits are a far cry from kits of yesteryear which were a challenge to even the most solder hardened builder. The only complaint common among kit builders is that "putting kits together is downright habit forming, building one is like trying to eat only one peanut."
A. EICO's new classic series is wrapped in a two-tone panel. Model 2036 is a 36 -watt stereo amplifier, $\$ 74.95$. B. Twin is model 2050, a 50 -watt unit at $\$ 92.50$. C. EICO classic stereo FM receiver with 36 watts amplification, $\$ 154.95$. D. EICO model 2200 classic series FM tuner sells for $\$ 92.50$. E. A popular item: Knight-Kit C -1 100 walkie-talkie, $\$ 9.95$ ea.

The
 Manure Battery

By Robert Hertzberg

AN extremely cheap and simple battery, using cow manure as the active electrolyte in combination with scrap pieces of common roofing metals, promises to solve the problem of powering transistor radios for large masses of people in India who are now virtually cut off from the outside world. Called a "bio-galvanic" cell, it is under development in the General Electric Space Technology Center in Valley Forge, Pa., where it has already demonstrated its potential by running a miniature electric fan and other small-current devices for hours at a time. Measured outputs as high as two milliwatts, considered more than adequate for transistor purposes, are being obtained from experimental models, according to reports.

Because cows in many areas of India are treated as sacred animals and are allowed to roam everywhere unmolested, their droppings are available in almost unlimited quantity for reactivation of batteries when the latter run down. The latent energy in the chemical-rich manure is very high, according to John J. Konikoff, manager of the Physical Biology Operation at the GE Center where the research is being carried on.

In its present form the cell is merely a wooden box, measuring about six inches on each side, in which alternating plates of copper and galvanized sheet iron are mounted
with each plate separated a fraction of an inch from the others above and below. When the manure is added, the electrolytic action starts immediately and current is produced.

As in conventional batteries using more sophisticated materials, the damp electrolyte eventually becomes exhausted and the plates are finally eaten away. However, very long life of the bio-chemical cell is expected because at the low current drain of transistor sets the eroding action is relatively slow. It

SCRAP METAL plates covered with cow manure provide enough current to operate a miniature fan when properly hooked up.

Exclusive with RCA ...

AUTOTEXT new,faster, easier way toward a career in electronics

EXCLUSIVE WITH RCA. "AUTOTEXT," developed by RCA and introduced by RCA Institutes, Inc., is a system of programmed instruction, accurately planned so that as you read a series of statements, questions, and answers, you learn almost without realizing it! It's fast! It's easy! It's fun!

NEW TREND IN EDUCATION! Programmed instruction has been proved with thousands of students. People who have had trouble with conventional home training methods in the past can now master the fundamientals of electronics almost automatically!

PROVE IT TO YOURSELF NOW! An interest or inclination in electronics is all you need. RCA "AUTOTEXT" will help you do the rest. And the future is unlimited; the jobs are available! The important thing is to get started now!

COMPLETE COURSE AVAILABLE, RCA Institutes now offers you a complete Home Training Course ("introduction to Electronics') using the "AUTOTEXT" method. You get a complete set of theory lessons, service practice lessons, experiment lessons, and all the kits you need. You'll learn faster with less effort!

FREE OFFER!

We'll send you complete information on the amazing new RCA "Autotext", along with a FREE SAMPLE of a Home Training lesson to prove to you how easy it is to learn this new way. Check "Autotext", and information will be rushed to you.

Complete selection of Home Training Courses,

 in addition to "AUTOTEXT" Introduction to Electronics.| - Electronic Fundamentals | Electronic Drafting |
| :--- | :---: |
| (also available in Spanish) | Automation Electronics |
| - TV Servicing | Transistors |
| - Color TV Servicing | Industrial Electronics |
| - Communications Electronics | Automatic Controls |
| - FCC License Preparation | Industrial Applications |
| - Mobile Communications | Nuclear Instrumentation |
| - Computer Programming | Digital Techniques |

- liberal tuition plan FOR ALL HOME TRAINING COURSES

This plan affords you the most economical possible method of home study training. You pay for lessons only as you order them. If, for any reason you wish to interrupt your training. you can do so and not owe one cent. No other obligations! No installment payments required.

- YOU GET PRIME QUALITY EQUIPMENT

All kits furnished with home training courses are complete in every respect and the equipment is top grade. You keep all the equipment furnished to you for actual use on the job, and you never have to take apart one piece to build another! Licensed by the New York State Department of Education. Approved for Veterans.

Classroom Training Available in New York City, and Cherry Hill (near Camden) New Jersey. Send postcard for free illustrafed book foday! Specify home training or classroom fraining!

A radio telescope made in a 5 -acre ravine is scanning the heavens to tell us about the distant galaxies in outer space

By Don Arthur Torgersen

SOMEWHERE at a secluded site in central Illinois, a gigantic astro-ear is listening to the universe-recording what the stars have to tell us. Is the universe flying to pieces? What happened to Andromeda, the great galaxy, one million years ago? How will the activity of the expanding universe affect our earth? These are some of the mysteries that the newly developed radio telescope at the University of Illinois' Vermilion River project will attempt to probe.

Construction of this giant astro-ear was a phenomenal event in itself. One might say that the engineers took pragmatic advantage of the earth's own face. To dig a hole of the necessary size in flat country would have required moving $150,000 \mathrm{cu} . \mathrm{yds}$. of earth and posed a difficult drainage problem. The obvious solution was to utilize a natural depression in the ground to save on earth moving and to provide ready-made drainage. Such a site was found in a ravine leading to the Vermilion River about five miles southwest of Danville, Illinois, it is out of the way of busy highways, power lines, radio and television stations, and other man-made sources of radio interference.
To get the contours, 50.000 cu . yds. of earth had to be removed from the ravine.

The design of the radio telescope represents the combined efforts of astronomy and electrical engineering and the minds of such men as George C. McVittie, Edward C. Jordan, and George W. Swenson, all professors at the University of Illinois. The project was financed primarily by the Office of Naval Research, and partially by the National Science Foundatlon and University funds. Similar projects are operating at Cornell University, University of Michigan. University of California and California Institute of Technology

Professors Lo and Dyson combined efforts to develop the astro-car's spiral-like antenna.

Signals from outer space reflect off the curved ground up to the 276 spiral-like antennas.

The natural stream was straightened and now flows through a concrete channel along the center line of the reflector. Storage capacity for flash floods was provided by building two dams upstream.

The massive reflector is 600 ft . long and 400 ft . wide. The surface of the earth is covered with asphalt liner, a material similar to very thick roofing felt. The reflector itself consists of $2 \times 2-\mathrm{in}$. galvanized wire mesh, stapled to the asphalt liner and with successive rolls crimped to one another so that each half of the reflector forms a continuous electrical surface, accurate to within 1 in . of a perfect parabolic cylinder. This radio mirror concentrates incoming signals onto a line 153 ft . above the bottom of the reflector.

Here 276 antennas are attached to the underside of a wooden truss 425 ft . long, 10 ft . high, and 4 ft . wide. The truss is carried on four wooden towers which are self-supporting in the north-south direction and guyed cast and west. Wood was selected in order to minimize the electrical interference that metal towers would have produced. When it was found that many bolts were necessarily about one wave length long, they were also made of wood instead of metal.

An array of logarithmic spiral antennas

Graphic record of radio signals received by the astro-ear during an 11hour period. Signal peak is due to broad complex of radio sources located in constellation Cygnus.
was developed at the university. By combining variable spacing and coupling of the antennas to the receiver, a well-concentrated, main beam 15 minutes of an arc wide is obtained. This means that the radio-telescope is largely free of one of the main problems that have limited radio scopes of the pastit can receive and record signals coming in from more than one direction at once.

The receiver operates at 611 megacycles, and can detect signals emanating from sources billions of light years away. It is said to be ten trillion times as sensitive as a good television set, and infinitely more valuable.

The receiver utilizes a low-noise amplifier backer up by a radiometer. A semiconductor switch connects the receiver in rapid alernation with the many antennas and with a standard source of electrical noise to measure the difference between these sources. This difference is recorded graphically. Eventually
the recording will be punched out on paper tape to be processed by a digital computer.

The first observational program underway for the astro-ear is a survey of radio sources in the accessible part of the northern skythat part which crosses the north-south line between 10° and 70° above the southern horizon. To do this, each antenna is mechanically turned once a day to aim the beam that sweeps the heavens as the earth rotates. Allowing for overlap between successive scans and possible re-runs necessitated by man-made radio interference, the task is expected to take five years.

Is it true that radio sources in the past were more numerous than they are now? Do they die out? If so, what causes them to do so? What will this tell us about the life expectancy of our own solar system? Undoubtedly the big astro-ear at Vermilion will prove invaluable as it probes into the deeper mysteries and nature of the universe.

THE FIGHT FOR A CHANNEL

The University of Illinois has located its radio-telescope at a remote site in order to prevent interference from such accidental sources as neon signs, fluorescent lighting, ignition systems, and electric machinery and high-voltage fences. However, the new radio telescope can be jammed by transmitters broadcasting on channel 37 of the ultra high frequency television band (UHF-TV). At present there are no television transmitters operating on this channel within several hundred miles of the project, but there is no assurance that this favorable situation will continue.

The radio-telescope is necessarily so sensitive that a television transmitter 1000
miles away could easily jam it completely. Even a man-made satellite or the moon could reflect a television signal broadeast on the other side of the earth and be mistaken for a cosmic radio source. The reason for operating on the channel 37 was not a matter of choice. The telescope had to operate somewhere in a broad band between 200 and 1000 megacycles. Virtually all of these frequencies are assigned either to the military or to broadcasters.

This past fall, 1963, the Federal Communications Commission has reserved channel 37 frequencies exclusively for radio-telescope explorations up to 1974. Until then, science may investigate signals from space.

FLY THE R/C CHAMP

By Tom Drake

FANTASTIC. The "kick" that tops them all. That's Tom Brett's World Championship Radio Control Perigee with fully proportional radio controls.

Built from a kit put out by DeBolt Engineering Co., the $61-\mathrm{in}$. wingspan model plane is an exact duplicate of the design which won the famous King of the Belgians Cup for Tom Brett in 1962. The radio
control unit used is the Sampey 404 QuadChannel and power is from the Johnson . $36 \mathrm{R} / \mathrm{C}$ engine with throttle control.

Radio controlled functions include infinitely variable engine speed, rudder, ailerons, elevators, wheel brakes, and steerable nose wheel. Fully simultaneous flight controls are augmented by transmitter trim knobs which make adjustments for roll,
yaw, and pitch channels while airborne. Receivers are available in super-regenerative or superheterodyne models. The latter costs $\$ 22$ more, but offers far greater sensitivity and selectivity.

Just what is proportional control? How does it differ from "reeds"? While the typical reed system transmitter has four sticks or push buttons plus engine control, the fully proportional Sampey has only one control stick plus an engine control knob. Reeds give an all-or-nothing servo action and so require skilled "pulsing" to make smooth maneuvers.
With proportional radio control, you can move the single stick in any direction to combine primary controls in infinite combinations just as you can in a real airplane.

Airborne System. The Quad-Channel 404-S receiver and three closed-loop (Steeb) servos for motor, rudder, and elevator control are shown in Fig. 2. Mount the receiver vertically against the forward bulkhead and nest it in foam rubber or plastic (not shown) for shock protection in case of a rough landing. Mount switch on fuselage side away from exhaust.

For details of cabin area see Figs. 2 and 3. Mount the 37 -hole power junction socket in servo board (Fig. 3, B). Use 6-pin connectors to plug in the power converter (Fig. 4, A), receiver (Fig. 2, A), and servo cables (Figs. 2 and 3). Cut a slot in the forward bulkhead (Fig. 3, H) to pass cable to power converter (Fig. 4, A) located in the nose compartment under the fuel tank. Pack nose under fuel tank with shock absorbing foam rubber. (Modifications to kit eliminate bulkhead \#3 which is replaced by a $3 / 10-\mathrm{in}$. sheet balsa bulkhead in front of converter and call for nylon control horns.)

Make servo board from $1 / 18$-in. rather than $3 \leqslant 2-\mathrm{in}$. plywood to save weight. Attach servos to board with 2-56 bolts and stop nuts. Install removable board to hardwood corner runners (Fig. 3, J) with six \#4 wood screws or 2-56 bolts and DuBro blind nuts. Make sure servos operate smoothly without any pushrod binding to insure faithrul tracking. Also see to it that servos can rotate 360° to protect servo amplifiers if power is applied with receiver not plugged in. This can make the servos whirl like dervishes.

The jackshaft (see drawing and Fig. 2,
F) provides easy adjustment to rudder and nose wheel steering. It also reduces nose wheel action and absorbs shock to protect rudder servo. Make linkage between jackshaft and servo from 045 steel wire.

DuBro wheel brakes on the main wheels are actuated by $20-\mathrm{lb}$. Dacron line to slow model after landing. Nylon guide (Fig. 6, C) is from fishing tackle shop. Wire-wrap and solder the $3 / 3-$-in. brass tubing guides to landing gear struts. Modify Kwik-link (Fig. 6, B) by flattening end and drilling $3 / 16$-in. hole for flexible cable to permit brake adjustments. The other end of the cable attaches to snap swivel which hooks into the elevator pushrod to operate brakes in conjunction with down-elevator control. Solder keeper. Bend $3 / 32$-in. brass tubing guide 180° to take pull-line (Fig. 6, F) through fuselage bottom.

Make motor control pushrod from $1 / 32-\mathrm{in}$. steel wire. Slop in $3 / 22$-in. brass tube guide. Prevents bind caused by slight S-bend in wire between bottom and top of fuselage. Slide pieces of $1 / 16-\mathrm{in}$. brass tube, bent at right angles, over wire ends and solder. Fit to servo and throttle linkages with safety wire keepers.

1: Johnson Automix throttle action: pushrod moves throtfle fore and aft according to servo setting.

Sampey 404 Proportional Control for Perigee Champion Radio Controlled Model

2: Receiver and servos mount neally with good accessibility above the wing cutout. A-Receiver, B-Knife-action slide switch, C-Motor control servo,

D-Elevator servo, E-Rudder servo, F-Jackshaft, G-Kwik-link for affaching pull-line to brake harness which operates brakes af full down elevator.

3: $A-1 / 16$ in. servo board, B-37-pin socket, CServo end of motor control pushrod, D-Snap-on swivel at brake pull-line on elevator pushrod, E-Jack
shaft, F-Steering pushrod to nose wheel, G-Kwiklink adjustabie attachments, H -Power converter cable slor, J-Hardwood runner of servo board mount.

4: Power converter mounts in bottom of nose compartment just behind engine. A-Sampey 404 power converter, $B-3 / 16$ in. sheet balsa retainer bulkhead, C-Forward section of steerable nose wheel pushrod.

5: Aileron servo under wing center: $A-120^{\circ}$ nylon bellcrank, B-pushrod, C -pushrods to nylon control horns G, D-servo, E-fiber glass wing reinforcement, F-kwik-links, H-strip aileron, J-plug connector.

6: Brake system: A-Du-Bro drum brake, B-Kwiklink for brake adjusiment, C-nylon guide yoke, D-20-1b. test Dacron harness, E-brass fubing guide for line to brake, F-brass iubing guide to control.

7: Landing gear and wheel brake. Metal brackets bolt strut to plywood inside wing. Down-elevator movement pulls on Dacron line through metal tubing wire-wrapped and soldered to strut to actuate brake.

Steering pushrod is $.045-\mathrm{in}$. wire in $3 / 3-\mathrm{in}$. brass tube guide. Bend wire end up at right angles after slipping through hole in horn at gear. Solder on retaining eyelet at horn. Secure aft end to jackshaft with Kwik-link.

Cut rudder and elevator pushrods from $3 / 16$-in. dowels attaching $1 / 10-\mathrm{in}$. wire end on rudder rod at servo end. Kwik-link at horn. Slip wire through rudder control horn, bend wire 90°, and install $1 / 32-\mathrm{in}$. wire
keeper. Kwik-link holds jackshaft end. Adjustment is by clevis at jackshaft.

Aileron controls (Fig. 5) use servo attached to $3 / 32$-in. ply platform under wing center section by 2-56 bolts in blind nuts. Use Top Flite 120° bellcrank. Pushrod to bellerank is $1 / 16$-in. wire with $1 / 32-\mathrm{in}$. wire keeper. Retain control rods with soldered eyelets.

For a pretty, tough finish, use Hobbypoxy according to makers directions.

MATERIALS LIST: PERIGEE WITH SAMPEY 404 PROPORTIONAL RADIO

No.	Description	Use	Price	
Req.				
1	Perigee airplane kit. deBoli Model Engineering Co., 3833 Harlem Rd., Buffalo 15, N. Y.	Model		\$ 24.95
1	Model 404-5 Quad-Channel transmitter. Sampey 8 Co., 633 N. Lake Barton Rd., Orlando, Fla.	Model Control	169.95	
1	Model 404-S Quad-Channel receiver. Sampey \& Co.		134.95	
1	Model 404 power converter, Sampey \& Co. Model 404 (Steeb) servos, Sampey \& Co.	Model Control	(each)	49.95
4		Surface Controls		38.95
1	Johnson . 36 R/C Auto-Mix throttle, Dynamic Models, Inc., 13755 Saticoy St., Van Nuys, Calif.	Engine	29.95	
1	set DuBro brakes, DuBro Products, 8121 N. Olcott Ave., Niles 48, III.	Wheel brakes		7.9
1 pr.	Dubro wheels, $\mathbf{2}^{3 / 4}$ in. also 1 nose wheel 13/4.	Landing gear		6.70
DuBro Paint All a tribut	Kwik-links as required for connections. and finishes: Hobbypoxy Pettit Paint Co., Belleville, N. ve materials may be ordered direct from makers, all 2072 Front St., East Meadow, N. Y.	by stores,	's Hob	by Di

Four unusual applications for power tools that are made possible by the Speed Control. 1, Drilling holes in plastic at low speeds to avoid soffening due to heaf; 2, Using your power drill as a power screwdriver; 3, Slowing down the rated 3000 strokes per minute of a saber saw to cut steel; 4, Operating a circular saw at 500-800 rpm to cut asbestoscement (Transite) board and plaster board.

SPEED COITROL FOR

3

REDUCING the normal speed of power tools having universal motors is often desirable to adapt them to load conditions. A series restance to drop the AC line voltage will reduce the power tool's speed but unfortunately the torque is lost. Also, it is not possible to maintain the speed with varying load conditions.

A simple speed control unit can be built that will provide speeds down to a very low level with no appreciable loss in torque. Parts cost about $\$ 7.50$, but price drops if common parts are in stock in your workshop.

The circuit of this interesting speed control unit was first designed by the General Electric Company, Rectifier Components Department, Auburn, New York.

The circuit. The counter E.M.F. of the motor power tool's armature is used as a motor-speed feedback signal to maintain essentially constant speed characteristics with various torque requirements. As the speed

Silicon controlled rectifier

slows down your power tool

to usable speeds without

sacrificing torque

By Harold P. Strand

of the motor tends to decrease with load, thus decreasing the counter E.M.F. of the motor armature, the sine wave "pot" voltage causes current to flow into the silicon controlled rectifier (SCR) gate earlier in the cycle. The SCR is triggered earlier and additional voltage is applied to the armature to compensate for the increased load and to maintain the pre-set speed.

Uses. A $3 / 8$-inch portable drill being used with the control to make some holes in thick plastic in the top photo on page 102. At the usual high drill speed this material has a tendency to soften due to frictional
heat and sometimes the drill will become anchored in a deep hole as the material melts around it. Using a much lower speed will help to eliminate this condition. In either case, a coolant should be used when drilling plastic which can be water with a little liquid soap added.

A demonstration of the strong torque possible at low speeds is shown in photo next to top where a screwdriver bit has been placed in the chuck and the tool is being used as a power screwdriver. Screws can be driven into wood easily without any pilot holes.

A small saber saw being employed as a power hacksaw to cut off a piece of $1 / 8$-inch steel in photo next to bottom. The speed of the tool has been reduced to give about 60 strokes of the blade a minute or as required. A fine-tooth, metal-cutting blade is used in the chuck. Applying light pressure and using some oil at the cut, it works very well. You can imagine trying this at the normal speed of around 3000 strokes a minute. Sheet metal can also be cut in a similar manner if care is taken to feed the blade slowly.

A portable circular saw is another good subject for the control where such materials as Bakelite, plastic and asbestos-cement board (Transite) has to be cut. The latter is a very difficult material to cut except with special cut-off wheels in a table saw. Bottom photo shows a cut being made quite successfully with a 4 -inch blade turning at about $500-800 \mathrm{rpm}$.

Connection. The tool cords simply plug into a receptacle at the side of the speed control unit. Two controls are provided on the top of the box for adjusting the speed and a toggle switch allows the drill to be operated at its normal full speed when this is desired. The line cord and a fuse holder are located on one end of the box with the switch, and a receptacle is at the other end. A three-wire cord and plug are used for the line connections for properly grounding the tool that plugs into a three-wire receptacle. This safety grounding employs the third wire in the cords as a ground conductor to eliminate the possibility of receiving a shock from the tool under conditions where leakage current to the frame of the tool, due to defective insulation, would otherwise present danger to the operator.

Putting it together. The diagrans show all parts and connections which should be easy to follow. A small black crackle $3^{\prime \prime} \mathrm{x}$ $5^{\prime \prime} \times 4^{\prime \prime}$ box is used to house the parts and

Parts for the speed control are mounted on the top, bottom and two sides of the steel
box. Removable sides should be installed when the device is put into use.
the required holes are drilled. The parts are assembled in the box and wired, making soldered joints to all terminals. A convenient terminal strip is provided in the bottom of the box for the diodes D1 and D2, resistor R4 and capacitor Cl as well as terminal points for some of the wire connections and one end of the resistor R1. The SCR device must be mounted on a heat sink which is a piece of sheet aluminum bent up to provide clearance for the center stud and secured at one end under a screw that holds the terminal strip so as to make firm contact with the box. The insulation kit supplied with the SCR should be used for attaching the rectifier to the heat sink.

The silicon controlled rectifier used here is a C11B which has a rating of 6 amperes at a maximum temperature at the stud of 70 degrees C. A lower cost C15B could be substituted desired but a larger heat sink would be required since this one has a lower current rating.

In using this control on power tools, care should be taken to avoid prolonged use since the tools are not designed for low speed

PARTS LIST

Cl- $2 \cdot \mathrm{mf}$. 50 -volt electrolytic capacitor
01, O2-1N1693 diode (General Electric)
F1-5 amp. type 3AG fuse
Jl-Receptacle grounding type with oval mounting flange (Hubbell type 5256 or equivalent)
Pl-Plug, grounding type (Hubhell type 5654 or equivalent)
R1—2000-ohm 10-watt resistor
R2- $500-$ ohm 2 -watt wire-wound potent cometer
R3-200-ohm 2-watt wire-wound control
R4- 1000 -ohm $1 / 2$-watt resistor
Sl-toggle switch, s.p.s.t. rated at 6 amperes- 125 volts or better
SCR-C11B silicon controlled rectifier (General Electric) $1-3^{\prime \prime} \times 5^{\prime \prime} \times 4^{\prime \prime}$ steel box, black crackle finish (Bud CU-728) 1-fuse holder for 3AG fuses (Littelfuse No. 342001) Misc.—rubber grommet for $1 / 2^{\prime \prime}$ hole, terminal strip with 6 insulated tie points, 2 knobs (National HRS-4), 6-feet of No. 183 -wire appliance cord, type SJ, hardware, etc.
Estimated construction time: 3 hours
Estimated Cost: $\$ 7.50$
operation and may become damaged from overheating. This is mainly because their motors usually have a fan attached inside the motor on the shaft to provide cooling during operation which at low speeds cannot develop adequate ventilation. However, for intermittent use, there should be no problem.

SCHEMATIC DIAGRAM

UNIEESAL MOTOR SPEED CONTROL

Passive Booster for BCB DX-ing

By Art Trauffer

Passive booster (above right) helps pull in weak signals for AM broadcast tuner (left).

THE PASSIVE BOOSTER will greatly increase the sensitivity of 3- to 5-transistor portable radios as well as boost the input signals to 6 and 9 transistor radios and tube jobs. Many distant weak stations that you listen to for entertainment or DX'ing will pop in crisp and clear like the strong locals with this booster

The booster's heart is a $71 / 2^{\prime \prime}$ ferrite antenna core $1 / 4^{\prime \prime}$ in diameter. 100 turns of \#24 enamelled cstton-covered wire are evenly spaced on the core and the ends are connected separately to the terminals on a midget 365 mmf . variable capacitor. This circuit is nothing more than a tunable "loopstick" antenna covering the AM broadcast band. Both parts mount neatly in a wooden box fabricated for the project. Plastic or fiber material will do just as well.

The parts can be obtained from Lafayette Radio (part Nos. MS-331 for the core and MS-445 for the capacitor) or almost any parts supply house.

The passive booster (it gets its name because it has no amplifier and uses no power other than the signal's) is easy to use. First tune in a distant or weak station on the radio and rotate the radio until the signal is loudest. Now place the booster along side the radio with the booster's ferrite core parallel to the receiver's core. Tune the station on the booster for maximum signal. Now adjust the distance between the booster and receiver for optimum results.

Maid For Your Meter

Look for fewer sad days in the darkroom once you start using this easily made unit to calibrate a lying little light meter

By Jan S. Paul

0NE of the more worrisome worries photographers worry about is whether their light meters (also known as exposure meters) are telling them the truth.
"Why in the world doesn't somebody come up with a decent light-meter testing device that doesn't cost like 17 Hasselblads-a gadget a guy could make himself?"

This explosion came from one of my more cantankerous fellow shutter-shovers the
other day after developing a roll of underexposed misbegottens that will never see the light of day because they didn't when they were shot. My friend blamed his hapless pictures on a lying light meter. So we checked it out at the local camera shop and sure enough it was off about 3 f -stops, enough to keep the shades drawn on any negative.

Leaving my brooding friend to his own devices (to repair light meter-cost \$15),

EXPANSION BIT is ideal for culting the holes for the 4 different types of glass used in Meter Maid.

TOGGLE SWITCH (SPST) is located on lower panel at front of tester at same level as rheostat control.

BRACKETS are cut from aluminum sheeting to serve as holders for glass. (An alternate installation.)

DRILL holes for the light socket. This must be set at a point to give equal lighting at the 4 holes.

RHEOSTAT is mounted to back of lower panel. It is controlled by knob on numbered dial on panel front.

LIGHT SOCKET is screwed firmly in place only after determining best position for adequate illumination.

LIGHT METER of known accuracy and theostat control are used to colibrate the unit's light intensity.

I retired to my basement shop with the germ of an idea which finally developed into the healthiest malady ever to afflict a crooked light meter.

The Meter Maid that resulted is reliable, of simple construction, and can be built for under $\$ 15.00$. It can be used over and over again to check out a meter on both high and low levels of light and also on relative
color temperatures.
Your first step will be to acquire the necessary parts (see Materials List, page 148). Then take the metal cabinet and cut or drill the two-inch diameter holes for the four squares of diffusing glass, and the smaller holes for the rheostat and switch controls as indicated in the drawing and photos.

A chassis punch is the ideal tool for cutting the large holes. Lacking this you can do the job by using an expansion bit fitted with a metal-cutting blade and chucked in your portable electric drill. Use plain old blackboard chalk to mark the holes before cutting; it's easy to see and wipes off easily and quickly with a damp cloth without damaging the surface.

Now install the switch, rheostat, and lamp socket. Take care that the socket is so installed that an equal amount of light will reach each of the four squares of glass when the 100 -watt bulb is in place. To check this, wire the socket and temporarily position it in the cabinet. Then hold the square of smoked glass over each hole in succession, using a light meter to check light intensity at each hole. Move the socket until light emission is uniform at each hole, then mark its position and secure it in place.
(Continued on page 148)

 Radio Sweden, S.B.C. etc. has its brand of non-political neutralism, Moscow and Peking hammer out the Communist line while our own Voice of America holds up the cause of liberal democracy. Similarly, DX is often a mere matter of statisticsstations heard, countries verified and distance. But beneath this surface tunnels a world wilder than the rarest DX catch, complete with odd stations and weird characters that would outdo the most fantastic science fiction.

For example, the most intriguing clandes-

tine these days is that Spanish speaking mystery dubbed the "Phantom" and first spotted by a New York City DX'er. Actually the Phantom is not one, but two stations exchanging coded messages on a different frequency daily, ranging from 5500 to 6400 kc . and can be heard between 2330 and 0300 EST and/or 1500-1600 EST. These transmissions begin with a name and number combination (Amedio 32 was one used) repeated continuously for about 4 minutes-possibly some sort of identification-followed by groups of five digit numbers. The messages have also been heard by a Radio Sweden reporter in Oklahoma, ASWLC members in Ohio and Illinois, and finally your scribe heard them himself. Incidentally one of the stations has local-like signal strength in New York City

Beyond The Fringe: Even farther out is that point where broadcaster meets flying saucer man. Here we find one W. V. Grant, a long time fixture at station XERF (1570 kc ., 250 kilowatts at Ciuded Acuna, Mexico) but when that station fell upon evil days (like CFOR, CKLM and Radio Union at Santo

Domingo are threatening to QRM the English speaking Mexican out of business), Brother Grant was heard via KPDQ 800 kc . Portland, Oregon.

Now Grant has not encountered any flying saucers himself but he has talked at length with a $M r$. B who has ridden in one from the planet Clarion which is not visible from Earth). Based upon B's description, Brother Grant has decided that the saucer crew (who looked like Latin Americans) were actually demons in league with certain Soviet leaders who have supernatural powers. Clarion plots include the United Nations, disarmament, transmitting secret messages from
(Continued on page 148)

A little more sweat and the 3 -band beam antenna will be up (left). Taking a bit longer,

Pompton Valley Radio Club members (right) rest before final effort on multi-band antenna.

Field Day for Hams

Abstract

What was originally billed as a fresh air outing has mushroomed into hamdom's largest outdoor contest

Joseph Tartas, W2YKT

THE GENERATOR coughed and sputtered and whirled to a halt, followed by shouts of "Who shut that generator off!" and echoed by "It's all over 'till next year!" The ninth annual Field Day contest had come to an end for the Pompton Valley Radio Club, a group known, collectively, only as W2OR for 24 consecutive hours. Log sheets, required by the FCC for any communication by amateur radio, were quickly gathered and spread out on a nearby table. A quick tabulation of the results produced a shout of exhultation from the onlookers. "On the basis of this we've broken last year's record and, with luck, we might have top score this year," announced the chairman of the group.

The occasion was the 26th annual Field Day Contest sponsored by the American Radio Relay League (ARRL), the national
radio amateur organization. The first Field Day was originated in 1933 with the basic idea, to quote the original bulletin, "to get out in the open in this fine spring weather, the real object of this contest is to test portables (referring to portable radio equipment) wherever they may be available." Participation that year consisted of 50 stations with a top score of 98 contacts.

Since 1933, Field Day has been held yearly on the last weekend in June, except for the period of radio silence during World War II. In 1959, by comparison, the top score was over 2500 contacts by a single group, with over 1000 groups participating. It is estimated that ovel 14,000 of the more than 200,000 amateurs licensed in the United States participated in the 1961 contest.

The true aim in Field Day is to prepare amateurs in the use of unfamiliar equipment,
run on emergency power, for long periods of time so that they are capable of setting up quickly and maintaining communications during emergencies or disasters.

Actually, this is a full-scale test of emergency equipment for use in the Fall and Winter months to come, for Field Day is, in truth, a year-round affair.

In that first year of Field Day the experience was put to good use, for 1933 is to be well remembered for disaster and emergency work by hams with "portables." Even long before Field Day that year the amateurs had already seen service in the Guadalupe Valley of Texas where, in July of the previous year, the Valley had been inundated by a disastrous flood that wiped out all commu-
nications and transportation. The first news of the extent of the flood damage and of survivors was flashed to the outside world by ham radio, and contact was maintained cominuously until wire lines were restored 3 days later!

On August 29th, amateurs gathered information on an impending hurricane and maintained communications throughout the storm.

On September 30th the heavy rainstorm in California caused the destruction of six villages and railroad lines, and wiped out communications, leaving a twenty-mile-long path of death and destruction from the flash floods and avalanches that followed the inundation. Amateur radio operators, in conjunction with the California Highway Patrol,

Once all the muscle work is done, the Pompton Valley Radio Club members went to work logging; VHF tent was first in operation.

Into the wee hours of the night, Paul Haupt, W2PUO, and Frank Blatterman, W2PVO, keeps things humming on the 6 meter band.

Club President Don Diaz, K2QEM keeps things going with George Austin; WA2DPN, makes sure that log entries are properly made.

Left to right, George Austin, WA2DPN, Ledi Kuklinski (YL), WV2HAD calls CQ, Sam Sambataro, K2HHC, and Hans Weiss standby.

The breakfast menu (left) looks good. And that's K2AID, Mildred Roll (right) doing the honors over a hot stove on Sunday morning. Toast was made over fireplace at your own risk. Chow was better than the prices.

The World's Fair opened in Chicago and amatcurs participated. One highlight of the Fair was the winning of a code proficiency contest by Jean Elizabeth Hudson, only nine years old. At summer's end, the Gulf and East coasts were lashed by violent storms and hurricanes, during which the amateurs gave invaluable assistance.

Although amateurs were continuously giving assistance in one form or other, one notable event in ham annals occurred in 1937, when the Ohio River spilled over its banks flooding the Ohio River Valley from end to end. Covering such a wide area, it wreaked sufficient havoc to be classed, at that time, the greatest catastrophe since World War I. More than 1000 amateurs from all over the country converged on the area to set up the only dependable medium of communications under the existing difficult conditions, to handle more than 10,000 official messages concerning the disaster.

Like the California disaster, the Ohio River Valley Flood was repeated within the past year, with communications again being maintained by amateurs. Providing their own equipment and transportation without
any compensation, many of them operated for days on end without any sleep, some with the river rising around their feet.

In recent years, the greatest disasters were those that struck Texas City, Texas, the San Fernando Valley in the West, and one that struck in the East, almost obliterating the Connecticut towns of Winsted and Torrington. Had it not been for a radio amateur and his "portable," death and disease would have been rampant before the torrent ceased, and even with the tremendous loss suffered, it could have been far greater.

The Pompton Valley Radio Club started about 10 years ago as a handful of local hams, meeting informally in their homes $\mathrm{cv}-$ ery few weeks. As word spread between amateurs while talking "on the air," the membership expanded until eventually a public meeting place was needed to accommodate the large number of active members.

As was inevitable the group decided to participate in a Field Day contest, both for the sport involved, and the valuable experience to be gained in such teamwork. The initial planning began in January of that year, 1954, and by the time the last week-end in June had arrived, all the necessary equipment, tents and materials were located, checked out, and readied. Operations that year were conducted from a 500 foot hill in Kinnelon, N. J., in the Pompton Valley area. Using the call of Ernie Hufnagel, W2OR, a licensed amateur since 1923 and an experimenter long before that, the group began the twenty-four hour period with doubts as to the outcome. Final results put the group in 20th place in the four trans-

Interior of club's truck. Power generator is located near the driver's seat. Control panel is mounted on right rear panel near rear door.

mitter class, the class they have continuously operated in each year since.

The second year, the group (still using Ernie's call, W2OR) chose 750 foot Sheep Hill, in Boonton, N. J. for their Field Day location, where they have operated every year since then. Using an overgrown, rockstrewn path to get the equipment to the top was finally achieved, although not without accident. One member cracked the oil-pan on his car when he bottomed on a grasscovered rock in the middle of the road. By the time he discovered it he had done $\$ 45$ worth of damage to the car. The following year the hill was made into a city park and the road was paved all the way to the top.

The results that second year put the club in eighth place, a vast improvement over the first year, and an excellent showing for a new group competing with older and more experienced clubs.

Year by year they edged their way up, until in 1959 they were in second place with a final score of 1561 contacts and 9,837 points. The high score went to the Crescenta Valley Radio Club of California, with a top score of 10,305 points, but 441 less contacts, the extra points duc to the difference in power multipliers. Note that the Pompton Valley Radio Club was the highest for the Eastern part of the country, where group participation is heaviest.

Last year, the start of Field Day was accompanied by 40 mph winds that started with thunderstorms carly on Friday evening. The rain subsided and the sky cleared, but the wind remained, knocking over equipment
(Continued on page 125)

Right down to the wire. Operations continue as tents come down. Shown are W2OR, WA2GPF, W2RGD, K2HOE, W2ID, W2IBM and W2LOT.

By C. M. Stanbury, II

SUNSPOT activity should be at a minimum during 1964 thereby increasing the useful range of short-wave broadcasting frequencies. The 60 - to 19 -meter bands are expected to be wide open and some very unusual and uncommon DX's will be logged this year. If you are a wildcatter and like to roam the bands, the above table is set up for you.

To use the table, put your finger on the region you want to hear and \log, move your finger to the right until it is under the time you will be listening and lift your finger. Underneath your pointing digit will be the short-wave band or bands that will give the best DX results.

The time in the above propagation prediction table is given in standard time at the
listener's location which effectively compensates for differences in propagation characteristics between the east anad west coasts of North America. However, Asia and the South Pacific stations will generally be received stronger in the West while Europe and Africa will be easy to tune on the east coast. The short-wave bands in brackets are given as good second choices.

White's Radio Log (see page 128) now lists many new short-wave stations in its improved Short-Wave Section. You can use the Crystal Ball propagation table to determine your chances of hearing a given station. If the station broadcasts on more than one frequency, you will know which one will offer the best listening possibilities. Happy DX'ing.

Here-the dope on the . . .

HAM LICENSING FEES

The FCC is taxing amateur applications

It costs four dollars to get a General ticket

By Robert Hertzberg, W2DJJ

The most radical changes in ham licensing procedure in the half-century of the game went into effect on January 1, 1964. It pays all amateurs, present and prospective, to become familiar with them.
"Pays" is the right word, because now for the first time the FCC rules call for a schedule of application "filing fees," as follows:

- For initial license, including new class of operator license, and for renewal of existing license: $\$ 4.00$.
- For modification of license without renewal: $\$ 2.00$.
- For combination of modification and renewal: $\$ 4.00$.
- For a specific call sign: $\$ 20.00$.

Fee Facts. However, fees are not required for Novice applications, for stations used for recreational purposes under military auspices, and for stations in the Radio Amateur Civil Emergency Service (RACES). As before, the Novice ticket is good only for one year and cannot be renewed. To stay on the air, a holder must qualify for a higher class.

It is important to note that the basic $\$ 4.00$ charge is for the filing of an application and not for the license itself, which, technically, is still free.
To obtain a General class license, which is by far the best to have because it affords maximum operating privileges, you must appear in person at a district office or an examination point of the Federal Communications Commission and take a two-part test. If you do not know where the nearest office is located, write to the FCC. Washintgon, D.C., 20554, and ask for a copy of the free billetin entitled "Amateur Radio Service." This lists all offices and contains other useful information.

There is a difference between a "district office" and an "examination point." The
first is a permanent establishment, usually in a Federal building such as a court house or post office, and is generally open every business day during normal hours. The latter is a temporary office, open only at certain times of the year for the benefit of applicants for FCC licenses of all kinds who live a considerable distance from district offices.

If a district office is within convenient telephone range, call up and inquire about examination schedules. In the larger offices no appointments are necessary; in the smaller ones they may be. When you appear, be sure to have with you a personal check or money order for $\$ 4.00$ made out to the Federal Communications Commmission. You must hand this in with the Application Form 610 which you will obtain in the office and fill out there in a few minutes.

If you want to take the test at an examination point, first write to the district office nearest to your home and ask for a Form 610. Fill this out and return it, with a remittance for $\$ 4.00$ (no cash through the mails, please!) to that office. The latter will notify you by mail when and where to appear.

The Exam. The first part of the General

CB Filing Fee

The only change in the Class D Citizen Band licensing procedure is that an application form (FCC Form 505) must be accompanied by a check or money order for $\$ 8.00$, made out to the Federal Communications Commission. The fee for Class B and Class C is the same as the Class D filing fee, but a $\$ 10$ tab has been placed on Class A Citizen Band licenses. To obtain an FCC Form 505, write to any FCC district office or to the larger offices in Washington, D.C., 20554, and Gettysburg, Pa., 17325.
exam is the code test, run at 13 words per minute. If you pass this, the examiner hands you the written part. He grades this immediately. If you pass, you go home happily and simply wait for your "ticket" to reach you by mail. This takes about a month, because the FCC processes about 100,000 ham aplications a year and its facilities are swamped. Incidentally, all this paper work is now handled in a new FCC office in Gettysburg, Penna., of all places, and not any longer in Washington.

If you flunk the code test you do not even see the written part. You are finished, at least for thirty days. If you pass the code but flunk the written, you are similarly through. In either case your maney is not refunded. After a month you can make application again as if nothing had happened. In fact, you can pay and try every thirty days until you pass both halves of the test. The moral here is obvious: study hard before you make the trip, and save yourself money as well as time.

Mail-Order Tickets. The Novice, Technician and Conditional license tests continue to be mail-order "affairs of honor," conducted by volunteer examiners selected by the applicants. An examiner must be at least 21 years old and the holder of a current General class or better ham license ${ }^{1}$ or of a current commercial radiotelegraph operator license. Previously, an examiner could be a former holder of a commercial ticket. Also qualified is an operator of a manually operated radiotelegraph station in the service of the United States Government. This pro-

1. Extra or Advanced, which are more or less honorary types and carry exactly the same operating privileges as the General.

You can't argue with the precisely programmed tapes used by the FCC for code tests.
vision takes care of the military forces, in which ham radio is a big morale activity.

One big change in the mail-order routine is that the applicant can take the code test from the examiner before making formal application to the FCC and before handing over money. However, it costs nothing to obtain the Form 610 and to have it ready for filing as soon as you pass the code. To get a copy, write to the Federal Communications Commission, Gettysburg, Penn., 17235. Within ten days after clearing the code test you must return Form 610 to Gettysburg, along with a written request from the examiner (not from you) for the appropriate examination papers. This request must include the names and addresses of both the examiner and the applicant, a description of the examiner's qualifications, a statement that the applicant has passed the prescribed code test, and the examiner's signature. The FCC will send the papers to the examiner, and he in turn will return them, after completion by the applicant, to Gettysburg.

As previously mentioned, there is no filing fee for a Novice application. You must send the usual $\$ 4.00$ for either the Technician or the Conditional papers, and as in the case of the office tests this is not refunded if you flunk.

The Novice test is the easiest and carries the fewest operating privileges. The code test is at only five words per minute, and the written is so simple that boys and girls under the age of ten pass it regularly. The Technician code test is also five words per minute, but the written part is exactly the same as for the General, and the operating privileges are only slightly better than for the Novice.

Remind you of school days? An anxious wouldbe ham is taking the FCC receiving test.

Two people sending to each other can learn the International Morse code very quickly. Headsets are used so as not to disturb others.

With only a little more code practice, a prospective Technician can be a permanent General.

The Conditional test comprises the full 13 w.p.m. and written of the General. It is available to people who live more than 75 miles from an FCC office, or who are physically disabled and cannot travel, or who are in military service and cannot get away. It carries all the privileges of the General class.

The Novice and Technician exams must be taken at home under voluntary examiners, regardless of where applicants live. You cannot take them in person at FCC offices, nor can you even get the papers for them at the latter. Your only point of contact is Gettysburg. The Conditional has a different status, since it is merely a substitute for an office test.

Contrary to a widespread misconception, you do not have to start with the lowest grade of license an work your way upward. By far the majority of would-be hams qualify right off for the General.

Other Fees. The \$2 "modification" fee is intended mainly to cover changes of address. Send such information, and also requests for license renewal when no change in operating privileges is involved, only to Gettysburg. The main FCC office in Washington is concerned now only with policy, information and special matters.

Speaking of special matters brings us to the announced filing fee of $\$ 20$ for "a specific call sign." This new item promises to be an administrative hot potato. You only have to thumb through the 500 pages of the Call Book to realize that virtually all possible letter combinations are already assigned;
many, in fact, are assigned three and four times, with different prefixes. To show how difficult the situation is, I need use only myself as an example. My original call, long ago, was 2 ABK , and I have a sentimental attachment for it. I lost it when I moved temporarily into another district. Could I get an ABK combination today by sending in twenty and asking for it? Hardly. The Call Book already shows W2ABK, K2ABK, WA2ABK and WB2ABK!

It may occur to you that before you risk $\$ 20$ you might ask the FCC if certain combinations are obtainable, and thus save paper work for all concerned. Forget it! This is just the paper work the $\$ 20$ is supposed to cover. You must submit the money with your application, and if what you want is not free the money stays in Uncle Sam's pocket.

Personally, I feel that perhaps the FCC has put this price tag on special calls to discourage people from asking for them in the first place. The answers are so often, "Sorry," not available" that the whole operation takes on an unhappy, negative flavor.

The $\$ 20$ expenditure is less of a gamble for a relatively small group of hams who once held two-letter calls, let them drop, and now want to reclaim them. If their early ownership can be verified in the records of the FCC and its predecessors, the Federal Radio Commission and the old Department of Commerce, and if the calls are currently unassigned, these men are pretty sure to have their requests honored. If the original calls are not free, the Commission may offer them other two-letter combinations, which they can accept or reject without prejudice, but again with no choice of refund.

Free liferature

ELECTRONIC PARTS

1. This catalog is so widely used as a reference book, that it's regarded as a standard by people in the electronics industry. Don't you have the latest Allied Radio catalog? The surprising thing is that it's free!
2. This catalog is far too detailed to describe here. Lalayette Radio Elecironics Corp. will send one you can examine for yourself!
3. Here's another catalog that's bursting with goodies from Radio Shack Corp. Included is the exclusive line of Realistic equipment. If you can't find it here, you just can't find it!
4. We'll exert our influence 10 get you on the Olson mailing list. This catalog comes out regularly with lots of new and surplus items. If you find your name hidden in the pages, you win $\$ 5$ in free merchandise!
5. Unusual scientific, optical and mathenatical values. That's what Ed mund Scientific has. War surplus equipment as well as many other hard-to-get items are included in this catalog.
6. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest four-page flyer listing the latest in merchandise available, in cluding a giant $\$ 1$ special sate.
7. Brooks Radio \& Television Corp offers a $\$ 1,000$ reward to anyone that can find a competlior who can match their prices. Get facts and list of interesting offers today.
8. Want a colorful catalog of surplus goodies? John Meshna Jr. has one that covers everything from assemblies to Zener diodes. You can buy complex units that set the government back thousands, at a fraction of the cost?
9. Are you still paying drugstore prices for tubes? Nationwide Tube Co. will send you their special bargain list of tubes. This will make you light up!
10. Solder is not solder. To learn about the difference, read up on Ersin 5 -core solder. This Multicore alloy provides faster and better solder joints.
11. Now available from EDI (Elecrontic Distributors, Inc.) a catalog containing hundreds of electronic items. ED/ will be happy to place you on their mailing list.

HI-FI/AUDIO

stereo preamps and replacement tape heads and conversions are listed in a complete Shure Bros. catalog.
13. Here's a beautifully presented brochure from Altec Lansing Corp. Studio-type mikes, two-way speaker components and other hi-fi products.
14. For the love of mikes! Astatic Corp. has lots. Studio types, ham types, recording types, etc. see its catalog sheets for the details.
15. A name well-known in audio circles is Acoustic Research. Here's its booklet on the famous AR speakers and the new AR turntable.
16. Garrard has prepared a fourcolor booklet on its full line of autonatic turntables. Accessories are detailed 100.
17. For hobbyists designing loudspeaker enclosures, Eleciro-Voice luc. offers Bulletin \#10 which gives general suggestions for construction of all popular enclosures. A new high fidelity catalog is also available.
18. Speakers and enclosures from Argis Products Co. feature a new and novel well-mounting system. To find out more, Argus will be happy to send literature.
19. If you know stereo, youl know Empire. If you don't know Empire, you'd better ask for this four-page brochure, and get in on the news.
20. Tape recorder heads wear out After all, the head of a tape deck is like the stylus of a phonograph, and Rohins Industries has a booklet showing exact replacements. Lots of good info on how the things are built, too.
21. Wharfedale, a leading name in loudspeakers and speaker systems, has a colorful booklet to send to you on its product line. Complete with prices, it is a top-notch buyers guide.
22. A wide variety of loudspeakers and enclosures from Uiah Electronics lists sizes shapes and prices. All types are covered in this 16-page heavily illustrated brochure.
23. Here's a "plus" deal. EICO will send you a complete catalog of their new electronic kits, plus a four-page course leading to a novice class amateur license, plus a chart of electronic symbols, and finally, a booklet ex plaining the "why" of stereo!
24. Here's a complete catalog of high-siyled speaker enclosures and loudspeaker components. Universiry is one of the pioneers in the fietd that keeps things up to date.
12. Tone-arms, cartridges, hi-fi, and 25. Nothing to hide, that Harmon-

Kardon! They send you a batch of literature describing their products, complete with technical laboratory reports. The equipment is of course, beautiful. It sounds as good as it looks.
26. When a manufacturer of highquality high fidelity equipinent produces a line of kits, you can just bet that they're going to be of the same high quality! H. H. Scort, Inc., has a catalog showing you the full-color, behind-t he-panel story.
27. An assortment of high fidelity components and cabinets are described in the Sherwood brochure. The cabinets can almost be designed to your requirements, as they use modules
28. Very pretty, very efficient. that's the word for the new Betacom intercom. It's ideal for stores, offices, or just for use in the home, where it doubles as a baby-sitter.

TAPE RECORDERS AND TAPE

30. Want to see the latest in portable tape recorders? Curious about an intercom with a fabulous sound to-size ratio? Mathew Stuart. Inc. will send all the details at your request.
31. "The Care and Feeding of Tape Recorders" is the title of a booklet that Sarkes-Tarzian will send you. li's 16-pages jam-packed with info for the home recording enthusiast. Includes a valuable table of recording times for various tapes.
32. You can learn lots about tape recorders. Biy tape recorders for studios, little tape recorders for business men, all kinds of tape recorders from American Concerione.
33. If you are serious about home tape recording, this technical bulletin and descriptive literature from Kodak will interest you. In case you didn't know, they are in the tape market.
34. Here's a list of a complete line of tape machines. Also, SONY Sunerscope will include a list of ways that you can use a tape recorder, and some of these were new to us!
35. "40 and More Ways to Use Your Roberts Tape Recorder" tells you how to get the most from your tape recorder. Tips on language lessons, specches, and many others are yours for the asking from Roberts Electronics.

HI-FI ACCESSORIES

36. A 12-page catalog describing the audio accessories that make hi-fi living a bit easier is yours from S witchcraft, Inc. The cables, mike mixers, and junctions are essentials!
37. Here's some info on a wireless remote control for your hi-fi, or if you prefer, they have a wired version for you. There's also a sweet little phase and balance meter. Stereosontes, Inc. will send it all if you ask for it.
38. An entirely new concept in customizing electron tubes has gencrated a new replacement line. Gold Lion tubes give higher output and lover distortion than ordinary production high-fidelity tubes.
39. Gor "furniture-sag"? Hmmin? Adjustable Caster Co. thinks you'd better level the shelf your turntable sits on before you try to level the turntable itself! Lots of data here.

KITS

41. Here's a firm that makes everything from television kits to pocket stoves. The Conar catalog is yours for the asking.
42. Here's a 100 -page catalog of a wide assortment of kits. They're high-styled, highly-versatile, and Heath Co. will happily add your name to the mailing list.
43. A complete line of test equipment as well as a wide assortment of hi-fil and stereo gear from PACO hiss will come your way if you circle 43.

AMATEUR RADIO

45. Catering to hams for many years World Radio Laboratories has a few flyers for you to look over. These include their new transmitter and an assortment of other products that deserve space in any ham shack.
46. A long-time builder of ham equipment, Halicrafters, Inc. will happily send you tots of info on the ham, CB and commercial radio-equipment.
47. Here's a goodly assortment of literature covering the products of the Dow-Key Co. They make coaxial relays, switches, and preamps for hams and CB'ers.

CITIZENS BAND SHORT-WAVE RADIO

49. Want to see the latest in communication receivers? National Radio Co. puts out a line of mighty fine ones and their catalog will tell you all about them.
50. Are you getting all you can from your Citizens Band radio equipment? Cadre Industries has a booklet that answers lots of the questions you may have.
51. Antennas for CB and ham use as well as for commercial instalations is the specialty of Antenna Specialists Co. They also have a generator for power in the field.
52. One of the best ways to make a radio signal get up ' n 'git is to put the antenna up high enough, and you will need a place to hang it. Take your pick from this catalog of towers by Tri-Ex Tower Corp.
53. When private citizens group together for the mutual good, something big happens. Hallicrafters, /ire. is backing the CB React teams and if you're interested in CB, circle \#53.
54. A catalog for CB'ers, hams and experimenters, with outstanding values. Terrific buys on antennas, mikes and accessories. Just circle \#\# 5410 get Grove Electronics free 1963 Catalog of Values.
Also see items 46 and 47.

SCHOOLS AND EDUCATIONAL

56. Three new courses in marine communication, aircraft communication, and guidance and mobile communications are available from Na tional Radio Institute. The pamphlets are well-ilfustrated and educational.
57. Here are three pamphlets dealing with teicvision trouble-shooting, radio trouble-shooting and hif'? ficielity. These, from Progressive ELil-Kits are very complete and easy to muderstand.
58. Interested in ETV? Adler Electronics has a booklet describing educational television and this goes into a depth study of ETV in all its ramifications. There's a good science fair project here for someone!
59. For a complete rundown on curriculum, lesson outlines, and full details from a leading electronic school, ask for this brochure from the Indiana Home Study lnstitute.

ORGANS

61. A complete booklet and price
list giving you the inside data on Schober Organs are yours for the asking.

AUTOMOTIVE

63. Got some questions regarding transistor ignition? W.F. Palmer Labs will send you a booklet which explains what transistor ignition is all about. If you decide, after reading, that this is for you, their kits will let you build your own!
64. Here's some more data on transistor ignition systems for cars. Aufomotive Electronics Co. has the whole story here, including typical wiring diagrams.
65. Want power plus for your auto? New Transistorized Ignition adds 20% more MPG. 3 to 5 times more spark plug life. Lower maintenance cost. Free catalog and instruction booklet available from Anderson Engineering.

TEST EQUIPMENT

67. Get the most measurement value per dollar." That's what Electronic Measurements Corp. says. Looking through the catalogue they send out, they very well night be right!

TELEVISION

69. Interested in tackling a TV kit? Arkay Kits, Inc. will send you full literature (including a schentatic) of this truly educational kit. It's used in many of the electronic schools.
70. The first entry into the color-TV market in kit form comes from the Hearh Company. A do-it-yourself money saver that all TV watchers should know about.
71. The smallest television set to date is fcatured in this beautiful prepared brochure from SONY Corp. You'll be amazed at the variety this firm offers.

SIIDE RULE

72. Want to find rapid solutions to complicated math problems? Solve interest and ratio, log and trig problems with 10 -scale slide rule. Alsynco will send complete information.

INVENTORS

Potted Preamp

(Continued from page 83)
tained either from a local plastics distributor or direct from the manufacturer.

The plastic comes in a liquid form which is a pale blue in color . . . becoming waterclear upon hardening. Use of the material is extremely simple, the completely assembled preamp is placed in a small mold which can be a small cardboard or plastic box coated with petroleum jelly to serve as the release agent. Sufficient liquid plastic to completely cover the preamp is poured into a paper cup, and a few drops of hardening agent added. After stirring to thoroughly mix the plastic and hardener, the mixture is poured into the mold. This plastic will begin to gel in about 30 minutes . . . completely setting in 8 hours. Since the plastic shrinks very slightly during hardening, it is easily removed from the mold.

The gel cycle can be actuated by preheating the Castolite to be used to $125-150^{\circ}$ F. This is easily done by pouring the plastic to be used into a small, clean container which is then placed in hot water for a few minutes. Complete instructions on how to use Castolite are packed with the product.

Since the frequency response of this little preamp is quite good (20 to 100,000 cycles plus) it can also find application as a vertical input amplifier preamp for inexpensive scopes which have limited vertical sensitivity. Along these same lines, it will tie in well with the AC range of a standard VOM, making it into an AC-VTVM.

All in all, this little potted preamp is well worth the slight amount of time and expense expended in its ronstruction.

Hams Make Happy Husbands

(Continued from page 56)
throw you either! It needn't cost a great deal, and with some experienced help you can probably get on the air to make your first contacts for under $\$ 30$. They won't be in romantic, far-off places, but don't let that discourage you. It niay be deucedly glamorous to talk to a ham in far Cathay, but he can't take you out on non-ham dates!

So until you land your ham, forget the expensive, high-powered transmitters and content yourself with contacting the local operators. Remember that after you splice your wires, you can use his set and let him operate with yours. Nothing will be wasted, as the whole ham family will get into the act as time goes by.

MANY happy boy-girl meetings have happened on the ham air waves. When result is marriage, offspring usually become hams too.

Yes, girls, now is the time to get in the swim and send. As you learn the lingo you'll discover that the nice curves hams talk about are radio tube performance curves, and that if a ham asks for your key you needn't blush in embarrassment-he probably has a message to send and it's your telegraph key he's talking about.

There's a vast world of marriageable males waiting to be tapped, but it will take a smart gal to get 'em. Don't put the lipstick completely aside but supplement it with a few fancy QSL cards. Remember, if you want to hear a little voice saying "Dah-dah" around your house, the fastest way to begin is by saying "Dit-dah" yourself!

Field Day for Hams

(Continued from page 115)

that had been set up in the wee hours of the morning. After daybreak, beam antennas mounted on tall masts and framework towers had to be erected and guyed with the high winds continually trying to blow them down. Because of the exceltent planning and experience gained in previous years, no damage resulted to equipment, nor injuries to the people involved.

Power was supplied for everything by a 5 kilowatt generator mounted in a 1948 panel truck purchased by the club several years ago. Two fifty gallon drums in the truck provided sufficient gasoline for continuous operation, and water for washing, through a faucet in the side of the truck. Running continuously for 36 hours at a time, the generator had yet to fail during operations in the seven years it has been in use.

Field Day is gradually becoming a family affair with the Pompton Valley Radio Club. Among the members operating, were hus-band-and-wife teams, father-and-daughter, and father-and-son combinations. The kids also help out. The younger ones help with soda bottles and cleanup, while the older ones, not yet licensed to operate run errands, help with cooking, and assist the operators in keeping the logs and check sheets up to date by recording contacts made, and keeping track of these stations alphabetically to avoid duplicate contacts, are another one of their chores.

NEW PRODUCTS

(Continued from page 30)

Screwdriver Set Offers Double Duty

The large line of tools produced by Xcelite has been increased by a new double duty screwdriver set which includes an all-screwdriver version in addition to a nutdriverscrewdriver combination set. The PS88 set contains 8 midget tools, 5 slot tip types ($3 / 32^{\prime \prime}$ thru $1 / 4^{\prime \prime}$) and 3 Phillips (No's. 0, 1 and 2) plus a special, hollow "torque ampli-

fier" handle. The hollow handle slips over the top of the midget tool handles to provide larger grip, longer reach and greater driving power. The sets are stored in a break proof plastic pocket case which doubles as a bench stand. Prices range from $\$ 5.25$ to $\$ 8.25$. (Xcelite Incorporated, Orchard Park, N. Y.)

Two New Versions Of 6360 Tube Are Developed For Mobile Use

Amperex announces two new twin triode tubes especially designed for use as Class C amplifiers, oscillators and frequency multipliers in mobile transmitters at frequencies up to 200 mc . The type 8458 is designed for high R.F. power gain at 175 mc providing 30 watts load power from only one watt of drive. The 8457 driver can be operated as a cascaded doubler-multiplier driving the 8458 for a straight-through 160 mc amplifier. Both of these tubes replace the 6360 type in mobile transceivers to provide almost double the power with only minor power supply changes. Both tubes use a 13.5 volt center tapped heater. (Ainperex Electronic Corp., Hicksville, L. I., N. Y. 11802)

Photo Cell Relay

(Continued from page 73)
closed position, capacitor Cl is connected across the output of D1, smoothing the pulsating DC to essentially pure DC. Now, when the NE-77 is fired by illumination of the photocell, PC, it will continue to fire; keeping the relay energized even after light is removed from the cell. Opening the RESET switch, S 1 , removes C 1 from the circuit, again returning the circuit to its cycling mode of operation.

Operation and adjustment. As shown in the photos, the photocell relay was assembled in a small aluminum chassis box. Components were mounted on insulated tie-point terminal strips, with point to point wiring being used between components. The relay contacts were brought out to a three screw barrier terminal block, TB1, mounted on the top of the chassis box. The construction method illustrated is only a suggestion . . . the circuit lends itself to a number of different construction techniques.

After the photocell relay is completely assembled, and all wiring checked, connect its line cord to a source of 115 -volt AC outlet and turn on switch S1. With the photocell covered to exclude light, rotate the sensitivity control (R1) to the point where the relay just opens. When the photocell is now illuminated, the relay will close. Depending upon the position of the reset switch, S2, the relay will either remain closed after the light is removed, or open when the cell is no longer illuminated. Now you are all set to hookup alarms and light controls that you have been dreaming about.

"Let's see, that makes six bothered with TVI."

MAKE MORE

You'll find proven money-making enterprises featured in every issue of INCOME OPPORTUNITIES. This quarterly magazine shows you dozens and dozens of successful ways to be your own boss-successfully-on a parttime or full-time basis. You get first-hand information through success stories that show you the growth of ideas that have resulted in high profit ventures.
Yes, you'll find the magic formula for success in the pages of INCOME OPPORTUNITIES -getting your own special four issue subscription could be the best investment you'll ever make.

INCOME OPPORTUNITIES 505 Park Avenue / New York, N.Y. 10022		92
Enclosed is \$ \qquad Please send me___copies of No. 676 INCOME OPPORTUNITIES (in cludes postage and handling).		
Better than that: enter my special 4 issue sub scription to INCOME OPPORTUNITIES starting with No. 676.		
\square Payment of \$3 enclosed	\square Bill	
NAME (please phint)		
$\boldsymbol{C I T Y}^{\text {ADDRESS_STATE_CODE }}$		

WHITE'S RADIO LOG

An up-to-date Broadcasting Directory of North American AM, FM and TV Stations. Including a

 Special Section on World-Wide Short-Wave StationsWHITE'S RADIO LOG was founded by Charles DeWitt White in Providence, R.I. as an extension of his earlier publishing activities which, in turn, were a continuation of the business established by his father: the publication of city directories, street guides and municipal tax guides.

In the early days of broadcasting, the compilation of a list of operating stations and their frequencies was no simple task. Prior to the Dill-White Radio Act of 1927, if a feed merchant, auto dealer, barber or undertaker wanted to advertise his wares or services, he had only to select a frequency and go on the air.

Nevertheless, Mr. White's directory publishing experience had convinced him that he could successfully assemble a radio \log, and in 1924 he justified his conviction with The Rhode Island Radio Call Book, following this shortly after with White's Triple List of Radio Broadcasting Stations.

In 1927 the two publications were merged, nationwide distribution was established and in ensuing years related publications, such as Sponsored Radio Programs, Radio Announcer's Guide, Short-Wave Schedule Guide and

[^3]a special Canadian edition of White's Radio Log (which has had its title shortened to the one it bears today), where also issued. The Log reached a combined circulation of well over $1,000,000$ copies at one time.

The 1927 Fall-Winter issue of the Log listed 701 U.S. Stations. Most powerful were WEAF (now WNBC), N. Y., with 50,000 watts, KDKA, Pittsburgh, WGY, Schenectady, and WJZ (now WABC), N. Y., each with 30,000 watts; WGN-WLIB, Chicago, with 15,000 watts; and Boston's WBZ, also with 15,000 . Five stations listed (one a Junior High School in Norfolk, Va.) operated on a mighty 5 watts.
In 1957, Mr. White, who was then 76 years old, died in his sleep. His heirs sold all rights in and to the Log to the publisher of Science \& Mechanics and in January of 1958 the first edition of White's Radio Log, Vol. 35, No. 1, was published as a special supplement to the Radio-TV Experimenter.
From 1958 to the end of 1961, the Log was published in each semiannual issue of Radio-TV Experimenter until the beginning of 1962 when the magazine was published quarterly. Beginning with this issue, Radio-TV Experimenter will be published bi-monthly.

With six issues a year hitting the newsstands throughout the United States, Canada and many other countries, it is necessary that White's Radio Log undergo its first major format change in over two decades. In-
creased listings due to the growth of VHF and UHF television and FM broadcasting have made it an almost impossible, task to present the complete Log every two months with the listing accuracy demanded by the users. Add to these listings, stations located in Canada, Mexico and West Indies, and you can begin to imagine the enormous task it is to assemble White's Radio Log. To further increase the scope of the Log, the ShortWave Section has been revised, and the station listings increased in scope and number. Complete details on the Short-Wave Section appear immediately before that section.

In this issue of White's Radio Log we have included the following listings: U.S. and Canadian AM Stations by Frequency, U.S. Television Stations by States, Canadian TV Stations by Location, and the newly expanded Short-Wave Section.

In our next issue, April/May 1964, the Log will contain the following listings: U.S. and Canadian AM Stations by Location, U.S. FM Stations by States, Canadian Stations by Location, Mexican and Cuban AM Stations by Location, and the expanded

Short-Wave Section. The short-wave listings will always be completely revised in each issue of White's Radio Log to insure 100 per cent up-to-date information leaving nothing to chance.

In the June/July issue of Radio-TV Experimenter, the Log will contain the following listings: U.S. AM Stations by Call Letters, U.S. FM Stations by Call Letters, Canadian AM Stations by Call Letters, Canadian FM Stations by Call Letters, and the expanded Short-Wave Section.

Therefore, in any three consecutive 1964 issues of Radio-TV Experimenter, you will have a complete cross-reference listings of White's Radio Log that is always up-to-date. The three consecutive issues are a complete volume of White's Radio Log that offers complete listings with last minute station change data that can not be offered in any other magazine or book. If you are a broadcast band DX'er, FM station logger, like to photograph distant TV test patterns, or tune the short-wave bands, you will find the new White's Radio Log format an unbeatable reference.

QUICK REFERENCE INDEX

U.S. and Canadian AM Stations by Frequency 129 U.S. Television Stations by States................... 140 Canadian Television Stations by Location....... 142 World-Wide Short-Wave Stations................... 142

U. S. and Canadian AM Stations by Frequency

U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S. Abbreviations: Kc., frequency in kilocycles; W.P., watt power; d-operates daytime only. Wave length is given in meters.

WHITE'S
 RADIO
 LOG

Kc. Wave Length KCNO Alturas. Calif. KGAC Los Angeles, Calif. WACL Waycross, Ga. WKYB Paducah, Ky. KGRT Las Cruces, N. Mex. WMCA New York, N.Y WSYR Syracuse, N.Y. WLLE Raleigh, N.C. WKBN Youngstown. Ohlo W NAX Yankton, S. Dak. WFAA Dallas, Tex WBAP Ft. Worth. Tex KVI Seattle, Wash.

WMAM Marine
$580-516.9$
580-516.9
CJFX Antloonish, N.S.
CKEY Toronto. Ont
CKPR Ft. William, Ont.
CKUA Edmonton, Alta.
CKY Winnipeg, Man.
WABT Tuskegee, Ala.
KABI Ketchlkan, Alaska
KTAN Tucson. Ariz.
KUBC Montrose, Colo.
WDBO Orlando, Fla.
WGAC Augusta, Ga.
WILL Urbana, ill.
KSAC Manhattan. Kans.
WIBW Topeka, Kans. WALB Alexandria. La. WELO Tupelo, Miss. KANA Anaconda, Mont. WAGR Lumberton, N.C KWIN Ashland, Oreg. WHP Harrisburg, Pa. KOBH Hot Springs, S. Oak. WRKH Rockwood. Ten KOAV Lubbock. Tex. WLES Lavrencevilie, Va . WCHS Charleston, W.

590-508.2

CFAR Flinflon. Man. CKRS Jonquiere. Que.
VOCM St Johns, N.F KHAR Anchorage, Alask WRAG Carroliton, Ala. KBHS Hot Springs. Ark. KFXM San Bernardino. Cal.
KTHO Tahoe Valley, Calif. KCSJ Pueblo, Colo. WOLP Panama City, Fla. WPLO Atianta. Ga
KGMB Honolulu, Hawail WBBY Wood River, III WBBY Wood River, III. WVLK Lexington. KY. WEEI Boston. Mass. WKZO Kalamazoo. Mlch
KGLE Glendive, Mont. KGLE Glendive M Mon WOW Omaha. Nebr. WROW Albany. N.Y.
WGTM Wilson. N.C. WGTM Wilson. N.C. KUGN Eugene,
WARM Scranton. Pa WMBS Uniontown. Pa. KTBC Austin. Tex KSUB Cedar City, Utan WLVA Lynchburg. Va.

600-499.7

CFCF Montreal, Que.
CFCH North Bay, Ont. CFQC Saskatoon. Sask.
CJOR Vancouver, B.C. CJOR Vancouver, B.
CKCL Truro. N.S.
WIRB Enterprise, Ala. KCLS Flagstaff, Ariz. KVCV Redding. Calif.
KOGO San Oiego, Callf.
KZIX Ft. Collins, Colo.

Kc. Wave Length WICC Bridgeport, Conn. WPDQ Jacksonville, Fla. WMT Codar Rapids. lowa
WWOM New Orleans, La. WFST Caribou, Maine WFST Caribou, Maine
WCAO Baltimore. Md. WLST Escanaba, Mich WTAC Flint, Míh. KGEZ Kalispell, Mont. WCVP Murphy. N.C. WSJS Winston.Saiem, N.C. KSJB Jamestown. N.D. WFRM Coudersport. P
WAEL Mayaguez. P.R. WREC Memphis. Tenn. KROD El Paso. Tex. KERB Kermit, Tex.
KTBB Tyler, Tex. $610-491.5$
CKML Mont Laurier, Que.
CHNC New Carlisle, Que.
CJAT Trail, B.C.
CKKL Thompson, Man. CKTB St. Catharines, Ont.
CKYL Peace River. Alta. CKYL Peace River, Alta.
WSGN Birmingham, Ala. WSGN Birmingham, Ala.
KFAR Fairbanks, Alaska KFAR F airbanks, Alaska
KAVL Lancaster, Callf. KFRC San Francisco. Callf. WTOR Torrington. Cunn W10D Mlami, Fla.
WMEL Pensacola, Fla. WCEH Hawkinsville, Ga.
WRUS Russellyille WRUS Russeliville. Ky KDAL Duluth. Milin.
WDAF Kansas Clty. Mo. KOJM Havre. Mont. KCSR Chadron. Nebr WGIR Manchester, N.H. KGGM Albuquerque, N.Mex WAYS Charlotte. N.C. WiP Philadelphia. Pa. KILT Houston, Tex. KVNU Logan, Utah WSLS Roanoke, KEPR Kennewick. Wash.
620-483.6
CFCL Timmins, Ont. CKCK Regina, Sask. KTAR Phoenix, Ariz. KNGS Hanford, Calif. KWSO Mt. Shasta, Callf.
K STR Grand Junction. Coio. WSUN St. Petersburg. Fla. WTRP LaGrange, Ga. KWAL Wallace, Idaho KMNS Sioux City, lowa WTMT Loulsvilie, Ky. WLBZ Bancor, Maine WJOX Jackson. Miss. WVNJ Newark, N.J. WHEN Syracuse, N.Y. WONC Ourham. N.C.
KGW Portland. Oreg. KGW Portland. Ore
WHJB Greenshurs,

1000 1000

1000
1000
10000
5000
1000 d
\square
\square
\square
\square1000
10005000
5000
500 d
50005000
5000
5000
500 d
5000
5000
50005000
50005000
5000
1000
1000
5000
1000
${ }^{1} 000$
5000
5000
5000
5000
10000
1000
1000
5000
1000

WKYN San Juan, P.R.
W.P
WCAY Cayce, S.C
WATE Knoxville. Tenn.
KWFT Wichita Falls. Tex.
ww R urlingtun. $V t$.
WTMJ milwaukes, Wis.
630-475.9
CFCO Chatham, Ont.
CKAR Huntsvilíe, Ont.
CHLT Sherbrooke, Que
CHLT Sherbrooke, Que.
CFCY Chariotestown. P.E.I.
CJET Smith Falls. Ont
CKRC Winnipeg, Man.
CKOV Kelowna, B.C
WAVU Albertville, Ala.
WJOB Thomasville, Ala.
KJNO Juneau, Alaska
KVMA Magnolla, Ark.
KIOO Monterey. Callf
KHOW Denver. Colo.
WMAL Washington, O.C.
WSAV Savannah, Ga,
WNEG Toccoa, Ga.
WLAP Lexington. Ky.
KTiB Thibodaux. La.
WJMS Ironwood Mich.
KOWB So. St. Paul. Minn.
KXOK St. Louls, Mo.
KGVW Belgrade, Morit
inn.
KOH Reno Nev.
KLEA Lovington. N. Mex
WIRC Hickory. N.C.
WMFO WiImington, N.C.
KWRO Coquille, Oreg.
WEJL Scranton, Pa.
\squareKMAC San Antonio, Tex.
on5000dKGDN Edmunds, Wash. 5000 d
KZUN Opportunity, Wash. 500 d
640-468.5
CBN St. John's, N.F.KFI Los Angoles, Callf.
10000
50000
WOI Ames, lowa
WHLO AKron. Onio
WNAD Norman, Okla.
650-461.3
KORL Honolulu, Hawaii
WSM Nashville, Tenn.
KIKK Pasadena, Toxas
660-454.3
KMEO Omaha, Nobr.
WNBC New York, N.Y
1000
5000
1000
1000
10000
10000
1000
10000
1000
웅
If. 5000
$670-447.5$
WMAQ Chicago, III.
$680-440.9$
CHFA Edmonton, Aita.
5000d
CHLO St. Thomas. Ont.
5000 d
1000
CJOB Winnlpeg, Man.
CJOB Winnipeg, Man.
CKGB TImmins, Ont.
KNBR San Fran.. Calif.
WPCTT St. Potersbur
WCT
WCBM Baltimore. Md
WCBM Baltimore. Md
WNAC Boston.
WDBC Escanaba, Mich
KFEQ St. Joseph. Mo
WINR Binghamton. N.Y.
WRVM Rochester. N.Y
WRTF Raleigh. N.C.
WiSR Butler, Pa.
WAPA San Juan. P.Rice
WMPS Memphis, Tenn.
KBAT San Antonio, Te
KOMW Omak. Wash.
KOMW Omak, Wash.
WCAW Charleston, W.Va.
690-434.5
$\begin{array}{ll}\text { CBU Vancouver, B.C. } & 10000 \\ \text { CBF Montreal, Que. }\end{array}$
WVOK Birmingham. Ala. $\quad 50000 \mathrm{~d}$
$1000 d$
1000
$\begin{array}{lr}\text { KSKY Dallas. Tex. } & 10000 \mathrm{~d} \\ \text { KS. } & 1000\end{array}$
$670-447.5$
50000
0000
Kc. Wave Length W.P.
WKTG Thomasville, Ga. \quad W.P.
$\begin{array}{ll}\text { KLOE Goodland, Kans. } & 1000 \mathrm{~d} \\ \text { WFMW Madisonvils. Ky } & 500\end{array}$
$\begin{array}{lr}\text { WFMW Madisonville. Ky } & 500\end{array}$
WMTC Van Cleve, Ky. Ky $\quad 500$
KTRY Bastron
$\begin{array}{ll}\text { WMTC Van Cleve, Ky. } & 1000 \mathrm{~d} \\ \text { KTRY Bastrop, La. } & 250 \mathrm{~d} \\ \text { WARB Covington, La. } & 250 \mathrm{~d}\end{array}$
$\begin{array}{lr}\text { WMTC Van Cleve, Ky. } & \text { lo00d } \\ \text { KTRY Bastrop, La. } & 250 d \\ \text { WARB Covington, La. } & 250 d\end{array}$
$\begin{array}{ll}\text { WARB Covington, La. } & 250 d \\ \text { WJTO Bath. Maine } & 1000 \mathrm{~d}\end{array}$
WACE Chlcopee Mass. $\quad 1000 \mathrm{~d}$
WAR
$\begin{array}{ll}\text { WACE Chlcopee, Mass. } & 5000 \mathrm{~d} \\ \text { KWRE Warrenton, Mo. }\end{array}$
KWRE Warrenton, Mo. 1000 d
KWOA Worthington. Minn. 1000 d
KWOA Worthington. Minn. i000d
KURL Billings. Mont.
KVOD All
KVOD Albuquerque. N. Mex. 1000 d
KVOD Albuquerque, N. Mex. 1000 d
WDOS Oneonta. N. Y. $\quad 1000 \mathrm{~d}$
WFMC Goldsboro. N.C. 1000 d
WOHS Shelby. N.C.C. 1000 d
WMGS Bowling Green 1000 d
WMGS Bowling Green, Ohio 1000 d
$\begin{array}{ll}\text { KBOY Medford. Oreg. Ohio } & 1000 \mathrm{~d} \\ \text { I000d }\end{array}$
$\begin{array}{ll}\text { WBAK Mantlcoke, Pa. } & 1000 \mathrm{~d} \\ \text { WPAT PIttsburgh } & \text { Pa }\end{array}$
$\begin{array}{ll}\text { WPAK Nantjcoke, Pa. } & 1000 \mathrm{~d} \\ \text { WPAI Pburgh, Pa. } & 5000 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { WPIT Pltisburgh, Pa. } & \text { lo00d } \\ \text { WPAL Charleston, S.C. } & 1000 \mathrm{~d} \\ \text { WLIL Lenolr. Tenn. } & \text { lood }\end{array}$
KPCN Grand Prairie. Tex. $\quad 500 \mathrm{~d}$
KSVN Oeden, Utah
$\begin{array}{ll}\text { KSVN Ogden, Utah } & \text { Iex. } \\ \text { WPIK Alexandria, Va. } & 5000 \mathrm{~d} \\ \text { WPM }\end{array}$
$\begin{array}{ll}\text { WPIK Alexandria, } V a . & 5000 \mathrm{~d} \\ \text { WMNA Gretna, Va. } & 1000 \mathrm{~d}\end{array}$
WMNA Gretna, Va. $\quad 1000 \mathrm{~d}$
KULE Ephrata, Wash. $\quad 1000 \mathrm{~d}$
$\begin{array}{ll}\text { KULE Ephrata, Wash. lo00d } \\ \text { WXMT Merrill, Wis. } & l 000 d\end{array}$
740-405.2
CBXA Edmonton, Alta. 50000
CBL Toronto. Ont. 50000
WBAM Montgomery, Ala. 50000 d

KUEQ Phoonix, Ariz.	1000 d
UR	

 KGLM Avalon, Calif. \(\quad 10000 \mathrm{~d}\)
 KCBS San Francisco. Calif. 50000
 KSSS Colo. Springs, Colo. 1000
 KVFC Cortez Colo. Colo. 1000
 WFSG Boca Raton. Fla. 1000 d
 WKMK Blountston, Fla. $\quad 1000 \mathrm{~d}$
WKIS
$\begin{array}{lr}\text { WKIS Orlando, Fla. } & 5000 \\ \text { KYME Bolse, Idaho } & 500 \mathrm{~d}\end{array}$
KYME Bolse. Idaho
WVLN Olney. Ill. 1000 d
KBOE Oskaloosa, lowa 250 d
WNOP
WNOP Nowport, Ky. 1000 d
WTAO Cambridge. Mass. $\quad 250 \mathrm{~d}$
KPBM Carlsbad, N. Mex. $\quad 1000 \mathrm{~d}$
$\begin{array}{ll}\text { WGSM HuntIngton. N.Y. } & \text { 1000d } \\ \text { W000d }\end{array}$
WGMBL Morehead City. N.C. 1000 d
WMBL Morehead City. N.C. 1000 d
WPAQ Mount Airy. N.C. 10000 d
KPAQ Mount Airy. N.C. 10000 d
KRMG Tulsa, Okla.
50000
WVCH Chester, Pa. 10000
$\begin{array}{ll}\text { WIAC San Juan, Pa. RIco } & 1000 \mathrm{~d} \\ \text { WBAW Barnwe } & 10000\end{array}$
$\begin{array}{ll}\text { WBAW Barnwell. S.C. } & 10000 \\ 1000 \mathrm{~d}\end{array}$
$\begin{array}{lr}\text { WIRJ Humbolt. Tonn. } & 250 \mathrm{~d} \\ \text { WIR Tullahoma. Tenn. } & 250 \mathrm{~d}\end{array}$
$\begin{array}{lr}\text { WJIG Tullahoma. Tenn. } \quad 250 \mathrm{~d} \\ \text { KJRH Houston. } \\ & 50000\end{array}$
$\begin{array}{ll}\text { KTRH Houston, Tex. } & 50000 \\ \text { KCMC Texarkana, Tex. } & 1000\end{array}$
$\begin{array}{ll}\text { KCMC Toxarkana, Tox. } & \quad 1000 \\ \text { WBCI Willamsburg, Va. } & 500 \mathrm{~d}\end{array}$
25000d
1000
1000 d
5000 d
5000
$000 a$
1000
1000

1000
500 d

5000 5000

10000
KVNA Flagstaff. Arlz
KEVT Tueson, Ariz.
KBBA Benton, Ark.
KBBA Benton, Ark.
KAPI Pueblo, Colo.
KAPI Pueblo, Colo.
WAOS Ansonia, Conn.
WAOS Ansonia, Conn.

white's RADIO LOG

Ke. Wave Length WIBX Utica. N.Y. WPET Greensboro, N.C. KYES Roseburg. Oreg. WPEN Phlladelphia. Pa. WBER Moncks Corner. S. KWAT Watertown, s.Dak WAGG Franklin, Tenn. KDSX Denison. Tex. KPRC Houston. Tex. KSEL Lubbock. Tex. WXG1 Richmond. Va. KJR Seattle. Wash. WERL Eapie River, Wis. WKTS Sheboygan, Wis.

960-312.3

CFAC Calgary. Alta.
CHNS Halifax. N.S.
CKWS KIngston, Ont WBRC Birmingham, Ala. WMOZ Mobile, Ala.
WCVQ Kodiak, Alaska KOOL Phoenix, Ariz KAVR Apple $\begin{aligned} & \text { Kalley. Calif. } \\ & \text { KNEZ }\end{aligned}$ KABZ Lompoc, Calif, WELI New Haven. Conn. WJCM Sebring, fla. WJAZ Albany. Ga. WRFC Athens. Ga. KSRA Salmon, Idano WSBT South Bend, ind KMA
WPRT
Shenandoanh. lowa.
Prestonsburg, Ky. KROF Abseville, La.
WBOC Salisbury Mid WBOC Salisbury. Md,
WFGM
Fifthburg, Mass. WHAK Rogers City, Mich.
KLTF LIttle Falls, Minn. WABG Greenwood, Miss.
KFVS Cape Girardeau. Mo KNEB Scottsbluff. Nebr, KWYK Farmington, N.M
KRIK Roswell, N. Mex. WEAV Plattsburg, N.Y WFTC KInston. N.C KGWA Enid. Okla. WHYL Carlisle Falls, Oreg WADP Kane, Pa.
WBEU Beaufort, S
WBMC MeMInnvilie, Tenn. KIMP Mt. Pleasant. Tex
KGKL San Angolo,
KOVO Provo, Utah WDBI Roanoke, Va. KALE Richland, Wash.
$970-309.1$
CKCH Hull. Que. CKNL Ft. St. John, B. C. WERH Hamilton, Ala WTBF Troy. Ala.
KNEA Jonesboro, Ark.
KBIS Bakersfieid, Call KCHV Coachella, Callf. KBEE Modesto, Calit. WFEL Pueblo. Colo WFLA Tampa, Fla
WilN AtIanta, Ga. WVOP Vidalia, Ga KHBC Hllo, Hawalt KAYT Rupert, Idaho WMAY Springfield. IIt. KAVE Lovisville, Ky. WCSH Pertland, Maine WAMD Aberdeen. Md. WESO Sonthbridge, Mass.
WJAN Ishpeming, Mich. WKHM Jackson, MIch.
KQAQ Austin. Minn KOOK Billings. Mont. KVEG No. Vatte, Nebr. WJRZ Newark, N.J.

5000
 1000

5000d

5000
1000 d
1000
5000
1000
1000 d WCA
5000
5000 d
50000
$\begin{aligned} 1000 d & \text { WCAZ Carthage, il. } \\ 5000 & \text { WITZ Jasper, Ind. } \\ 5000 \mathrm{~d} & \text { KAYL Storm Lake, Iowa } \\ 5000 \mathrm{~d} & \text { KRSL Russell. Kans. }\end{aligned}$
5000d KAYL Storm Lake, Jowa
5000 d
KRSL Russell. Kans.
1000 WJMR New Orleans. La. 1000 WCR Rayville, La.
1000 WCRM Clare, Mieh.
5000 WABO Waynesboro, Miss.
1000 KRMO Monett, Mo.
5000 KSVP Artesia, N. Mex. 500 1000d WJEH Gallinolis, Ohio 5000d WTIG Massillon. Ohio 1000 KRKT Albany, Oreg. 5000d WIBG Philadelphia, Pa 5000 WVSC Somerset, Pa. 500 d 5000 KNOK Ft. Worth, T WYPR Christiansted, V.I. WYPR Danvilie, Va.
WBVA Waynesboro. KREM Spokane, Wash. WHA Madison. Wis wigl Superior, wis.

980-305.9

CKNW New Westmlnster,
Brjt. Columbla CFPL London, Ont. CBV Quebec. Que. CHEX Peterboro, Ont. WKLF Clanton, Ala WXLL Big Delta. Alaska KEAP Fresno. Callif. KFWB Los Angeles. Callf.
KCTY Salinas. Calif.
KGLN GlenwoodSprgs., Colo. WSUB Groton, Conn WRC Washington, D.C.
WDVH Gainesville. Fia.
WTOT WTOT Marianna, Fla. WBOP Pensacula, Fla.
WLOD Pompano Beach WKLY Hartwell, Ga WRIP Rerry, Ga. KUPI Idaho Falls, idaho KSGM Chester, III. WITY Danville. Ill. WCAP Shreveport, La. WOAC Otsell, Mass WPBC Minneapolls. Minn. WAPF MCComt, Miss. KMBC Kansas City, Mo KLYQ Hamilton, Mo
KVLV Falion, Ney KICA Clovis. Nev. KMIN Grants, N. Mi WTRY Troy. N.Y. WKLM Wilmington, N.C. WAAA Win.-Salem,
WONE Daytun, Ohio WONE Daytun, Ohio
WILK Wilkes-Barre WILK Wilkes-Barre, Pa. WAZS Summerville. S. KDSJ Deadwood ${ }^{\circ}$ Dak. WSIX Nashville. Tenn. KSRC Rosenberg, Tex. WFHG Bristol. WMEK Chase City, Va KUTI Yakima, Wash WHAW Weston. W.Va WCUB Manitowoc, Wis WPRE Prairie du Chien Wis 1000

990-302.8
CBW WInnipeg, Man. WEIS Center. Ala WWWF Fayette, Ala. WTCB Flomaton, Ala. KTKT Tueson, Ariz.
KKIS Pittsburg, Calif. KGUO Santa Barbara, Calif. KLIR Denver, Colo. WFAB Miami, Fla WHOO Orlando. Fla WDWD Dawson. Ga. WGML HInesvilie, Ga. KTRG Honolulu. Hawali CCAZ Carthage, II.

\qquad a d.

Ke. Wave Length KDCE Espanola, N.M. WEBR Buffalo. N.Y.
WCHN Norwich.
N. WRCS Ahoskie. N.C.
WWIT Canton. N.C. WDAY Fargo, N.Dak. WREO Ashtabula, Ohio
WATH Athens, Ohio KAKC Tulsa, Okla. KOIN Portland. Ore WWSW Pittsburgh, Pa. WJMX Florence, S.C. 50 50000
10000

000

250

000d 500 d

500 d 0000 5000

 50001000 d 1000 d
1000 d 10000

5000

10000

000d
250 d
5000

1060-282.8

CFCN Calgary. Alta.	10000
CJLR Quebec, Que.	10000
KUPD Tempe. Ariz,	500
KPAY Chico, Calif.	10000
WNOE Nat	

1000d
WHFB Benton Harbor Mich. 1000 d

WMAP Monroe, N.C.	250 d
WHOF Canton, Ohio	1000 d

WRJS San German, P. R. 250 50000d $1070-280.2$

1080-277.6

KSCO Santa Cruz, Callf.	10000
WTIC Hartford. Conll.	50000
WKLO Loulsville, Ky.	5000
WOAP Owosso, Mich.	1000 d
WUFO Amherst, N. Y.	1000
WEWO Laurinburg, N.C.	1000 d
KWJJ Portland. Oreg.	50000
WEEP Pitsburgh, Pa.	1000 d
KRLD Dallas, Tex.	50000

1090-275.1

| CHEC Lethbridge. Alta. | 5000 |
| :--- | ---: | ---: |
| CHRS St. Jean, Que. | 10000 d |
| KAAY Little Rock. Ark. | 50000 |
| WCRA Efingham, Jll. | 250 d |
| KHAI Honolulu, Hawail | 5000 |
| KNWS Waterloo, Jowa | 1000 d |
| WBAL Baltimor, Md. | 50000 |
| WILD Boston, Mass. | 1000 d |
| W MUS Muskegon. Mich. | 1000 d |
| WERB Garden City, Mich. | |
| KING Seattle. Wash. | 50000 |

1100-272.6

KFAX San Franeiseo. Calif. 50000 WLBB Carrollton, Ga. \quad 250d
WHLI Hempstead, N.Y. 10000 d $\begin{array}{lr}\text { WHW Hempstead, N.Y. } \quad 10000 \mathrm{~d} \\ \text { KYW Cleveland, Ohio } & 50000\end{array}$ WGPA Bethlehem. Pa. 250 d 1110-270.1
CFML Cornwall, Ont. $\quad 1000$
5000 d KI Galt, Ont. Calif.
500 d WALT Tampa, Fla. 50000 d
$\begin{array}{llr}\text { 250d } & \text { KIPA Hilo. Hawaii } & 1000 \\ \text { WMBI Chicago. III. } & 5000 \mathrm{~d}\end{array}$

$250 d$
$250 d$
$250 d$
250 d
2500 d
250 d
500 d
1000 d
500d
5000 d

Ke. Wave Length KMOX St. Louls. Mo KCLE Cleburne, Tex.
1130-265.3
CKwX Vancouver. B.C KRDU Dinuba, Calif. KSDO San Diogo. Callf KLEI Kailua, Hawal KWKH Shreveport, WDA Detrolt, Mich. 50000 WNEW New York, N.Y. ${ }_{50000}$

1140-263.0

CKXL Calgary, Alta. KRAK Sacramento, Callir. WMIE Miami, Fla. KGEM Boise, Idaho SIV Pekin, III.
KSIV Pekin, IIl. City, Okla. 1000 d
50000
1000
1000
5000
50000
50000

0000
5000
50000
10000
0000

STA San Juan, P.R. KSOO Sigux Falls. S.Dak. 10000 WRVA Richmond, Va.

50000

1150-260.7

CKSA Lloydminster. Alta. CHSJ Saint John. N.B. CKOC Hamilton, Ont.
CKTR Three Rivers, Que. WBCA Bay Minette. Ala. WGEA Geneva. Ala.
WGEA Geneva, Ala, Ala.
KLR No Little Rock. Ark
KXLR No. Little Rock. Ark
KRKD Los Angeles, Calif.
KJAX Santa Rosa, Calif. KGMC Englewood. Colo. WCNX Middletown. Conn. WDEL Wlimington. Del.
WND
Daytona Beh., Fla WNMP Tampa. Fla.
WFPM Fort Valley, Ga. WIEM Valdosta, Ga. WGGH Marion. III.
WGGH Marion.
KWKY Des Moines, Iowa
KSAL Salina. Kans. WLOC Mumforduille. Ky. WIBO Mumfordville, Ky. W GHM Skowhegan, Maine WHMC Gaithersburg. Md. WCOP Boston. Mass. WCEN Mt. Pleasant. Mich. KASM Albany, Minn. WXTN Lexington, Miss. KRMS Osage Beach. Mo KSEN Shelby, Mont KSEN Shelby, Mont. N. mex. WRUN Utica. N.Y. WBAG Burlington. N.C. WBAG Burinnoton. N.C. WGBR Goldsboro. N.C. 5000 WIMA LIma. Onio KNED MCAlester, Okla. KAGO Klamath Falls. Öreg. WHUN Huntingdon. Pa WKPA New Kensinaton. Pa WDIX Orangeburg. S.C. WTYC Rock Hill. S.C.
a rownship. KIMM Rapid City, S. Dak. 5000 d WAPO WCRK Morrlstown, Tenn. WTAW Bryan, Tex KIZZ CI Pus KVIL Highland Park. Tex. KJBC Midland. Tex KPNG Port Neches. Tex.
KBER Quanah. Tex. Tex KOFE Pullman, Wash.
KAYO Seattle Wash
KKEY Vancouver. Wash WABH Deerfield. Va. WELC Welch w WAXX Chippewa Falls,

1160-258.5
WJJD Chlcago, III. WJJD Chlcago, Ill. Uty 50000
KSL Salt Lake City, Utah 50000

1170-256.3

CFNS Saskatoon. Sask. WCOV Montgomery, Ala. KCBQ San Diego, Calif KLOK San Jose, Calif. KOHO Honolulu, Hawali WLBH Mattoon, III.
KSTT Davenport. Iowa
10000 10000 10000 10000 10000 1000 d 5000 1000

2500

5000
1000 d
5000
5000
1000
5000 d
5000 d
1000d
5000 d
500 d
1000
5000 5000
500 d 1000 d

5000

$5000 d$
1000
5000

5000
1000

1000
1000 1000
1000 d 1000 1000 5000 000 d 1000 5000 000 1000d 5000 000d 1000 d 1000d 1000d 000 d 500d 1000 d 1000 d 5000 1000 d 1000 d
000d . 5000 d 5000

1000

 0000W.P. Kc. Wave Length 50000
1000 d K OO Tulsa. Okla.
WLEO Ponce. P.R.
250d KPUG Bellingham. Wash.

1180-254.1

 St John's. Nild 100 CKVD Val D'Or. Que.000 WAUD Auburn, Ala
250d WJBB Haleyville, Ala,
220-245.8
CJOC Lethbridge. Alta.
JRL Kenora. Ont.
KCW Moncton, N.B.
KSM Shawinlgan. Quebec
WABF Fairhope. Ala,
KVSA McGohee. Ark.
KLIP Fowler, Calif.
KIBE Palo Alto, Calif.
KKAR Pomona, Calif.
KFSC Denver, Colo.
WDEE Hamden. Conn.
WQTY Arlington, Fla.
WOSL Kissimmee. Fla
WMET Mlami, Fla.
WCLB Camilla, Ga.
WPLK Rockmart, Ga.
WSFT Thomaston.
WLPO LaSalle. III.
WKRS Waukegan.
KJAN Atlantic, low
KOUR Independence. lowa
KOFO Ottawa. Kans
WFKN Franklin. Ky.
KBCL Shreveport. La.
WLBI Denham Springs, La
WBCE Sanford. Maine
WAVN Stillwater, Minn
WMDC Hazlehurst. Miss.
KBHM Branson. Mo.
KLPW Union. Mo.
WGNY Newburgh. N. Y.
WSOQ N. Syracuse. N.Y.
WKMT Kings Mtn. N.C.
WREV Reidsville. N.C.
WENC Whiteville, N, C.
KEYD Oakes, N.Dak.
WGAR Cleveland. Ohio
WERT Van Wert, Ohio
KBLY Guldon, Okla.
KAPT Salem. Ore.
WJUN Mexico, Pa
WRIB Providence, R.I.
WALD Walterboro. S.C
WFWL Camden. Tenn
WHEY Millington. Tenn.
KVLL Livingston. Tex.
K2EE Weatherford. Tex.
WLSD Big Stone Gap, V
KASY Auburn. Wash.
KOZI Chelan, Wash.
WRNE Wis. Rapids, Wis.

1230-243.8

CHFC Churchill, Man.
CFGR Gravelbourg, Sask.
CFHR Hay River. Nwt.
CFYT Dawson City, Yukon T
CFPA Port Arthur Oint.
W.P. Kc.

Wave Length
50000 WNUZ Talledega. Ala. 1000 KIFW Sitka, Alask 50000 KAAA Kingman. Ariz. KRIz Phoenlx. Ariz. 000d KINO Winslow, Ariz.

50 KBTM Joneshoro, Ark.
KGEE Bakersfield. Calif.
1000 KWE BC Barstow. Calif
250d K1BS Bishop, Calif
50000 KXO EI Centro Calif
10000 K KDAC Ft. Bragg, Calif,
1000d KGFJ Los Angeles, Calif.
1000d KPRL Paso Robles, Calif
50000 KRDG Redding. Calif.
50000 KWG Stockton, Calif KOZA Pueblo, Colo KGEK Serlin Colo. WINF Manchester, Conn. WGGG Gainesville, Fla WONN Lakeland, Fla
WMAF Madison, Fla

1000 $1000 d$

10000 d
$1000 d$
$250 d$
$250 d$

1000 250
250
100 WISP High Point. N.C
1000 WNNC Newton.C.
1000 WCBT Roanoke Rap.. N. C. 100
1000 KDIX DickInson. N.Dak.
1000 WCPO Cincinnati. Ohio

WHITE'S RADIO LOG

Ke. Wave Length KOEC Decorah, Iowa

 KWLC Decorah, lowaKBIZ Ottumwa, lowa KICD Spencer. lowa KIUL Garden City, Kans, KAKE Wichita, Kans. WINN Louisville, Ky.
WFTM Maysville, Ky. WFTM Maysville, Ky.
WPKE Pikeville, Ky. WSFC Somerset, K KASO Minden, La. WCOU Lewiston, Maine WCEM Cambridge, Md. WJEJ Hagerstown, Md.
WHAI Greenfiold. Mass. WOCB W. Yarmouth, Mass. WCBY Cheboyean Mich WCBY Cheboypan, Mich.
WJPD Ishpoming, Mich. WJim Lansing. Mich. KPRM Park Rapids. Minn. WJON St. Cloud, Minn. WGRM Greenwood, Miss. WGRM Greenwood, Miss WMis Natchez, Mlss. KFMOS Jefferson City, Mo. KODE Joplin. Mo. KNEM Nevada, Mo.
KBMY Billings, Mont KLTZ Glasgow, Mont. KFOR Lincoln, Nebr. KODY North Platte. Nebr. KELK Elko, Nev. KAVE Carlsbad. N.Mex. KCLV Clovis, N.Mex. WGVA Geneva, N. Y WJTM Jamestown, WNBZ Saranat Lake. N.Y. WSNY Schenectady. N.Y. WPNF Brevard, N.C. WCNC Elizabeth Cliy. N.C. 1000 d WRAL Raleigh, N.C. KDLR Devils Lake. N.Dak WHIZ Zanesville, Ohio KVSO Ardmore. Okla. KBEK EIK City. Okla. KBEL Idabel. Okla. KDKL Okmuloee, Okia. KFLY Corvallis. Oreg. KTIX Pendleton. Oreg. KPRB Redmond, Ores WRTA Altoona, Pa. WHUM Reading, Pa WKOK Sunbury, Pa.
WBAX Wilkes-Barre WBAX Wilkes-Barre, P
WALO Humacao. P.R. WALO Humacao. P.R.
WWON Woonsocket, R.I WKDK Nowberry. S.C. WBEJ Elizabethton, Tonn. WEKR Fayetteville, Tenn WBIR Knoxville, Tonn. WKDA Nashvilie, Tenn, KVLF Aldine, Tox KEAN Brownwood, Tex. KORA Bryan, Tex.
KOCA Kilgore. Tex. KSOX Raymondville, Tex. KCKG Sonora, Tex. KXOX Sweetwater. Tex. WSKI Montpeller, Vt. WSSV Petersburg, Va. WROV Roanoke, Va WTON Staunton, Va KXLE Ellensburgh. Wash; KGY Olympla. Wash WKOY Bluefleld. W.Va. WTIP Charleston. W.Va WDNE EIkins, W.Va. WOMT Manitowoc, Wis. WIBU Poynette, Wis. WOBT Rhinelander. Wis.
WJMC Rice Lake. Wis.
W.P.

1000 1000
1000 1000
1000

250
1000
1000
1000 d
000

000

\section*{000

000}

000
2000 000

000

1000
1000 d
1000
100
1000 1000
250
250 250
250
1000 250
1000
250
250 1000 d 1000 d
1000 d 1000 d
250
250
1000
250
250
250
1000
 1000
1000
1000 1000
250
1000 1000
1000 1000 d
500d 1000
1000 1000 d 1000 250
1000 . 1000 d 1000 2 100
100 100 1000 250
1000 1000
Ke. Wave Length
KFBC Cheyenne, Wyo.
KEVA Evanston, Wyo.
KASL Newcastie, Wyo.
KRAL Rawlins, Wyo.
KTHE Thermopolis, Wyo.

1250-239.9

CHWO Oakville. Ont. CKBL Matane, Que. WZOB Ft. Payne, Ala. WETU Wetumpka, Ala. KAKA Wickenburg, Ar
KHIL Willcox. Ariz. KFAY Fayetteville, Ark.
KALO Little Rock, Ark. KHOT Madera, Calif. KTMS Santa Barbara, Calit
KDHI Twenty. Nine Palms, California KMSL Ukiah, Calif.
KICM Golden, Colo. WNER Live Oak, Fla. WRIM Pahokee, Fla.
WDAE Tampa, Fla. WLYB Albany, Ga.
WYTH Madison, Ga. W12Z Streator, Ill. WGL Ft. Wayne. Ind. KCFI Codar Falls, lowa
KFKU Lawrence, Kans. WREN Topeka, Kans. WNVL Nicholasville, Ky. WLCK Scottsville. Ky. WARE Ware. Mass. WWBC Bay City, Mich. KOTE Fergus Falls, Minn
KCUE Red Wing. Minn. WHNY McComb, Miss. KBTC Houston, Mo. WKBR Manchester, N.H. WIPS Ticonderoga, N.Y. WFAG Farmville, N.C. WKDX Hamlet, N. C
WBRM Marion, N.C. WCHO Washington Court KQEN Roseburg, Orif. WLEM Emporium. Pa. WPEL Montroso. Pa. WRYT Pittsburgh, Pa. WNOW York, Pa.
WTMA Charleston. S.C.
WCKM Winnsboro, S.C. WKBL Covinoton Tenn WNTT Tazewell, Tenn KPAC Paris, Tox. KUKA San Antonlo, Tex. KTFO Seminolo, Tox. KANN Oqden, Utah KVEL Vernal, Utah WOVA Danvillo, Va.
WYSR Franklin, Va. KWSC Pullman. Wash. WEMP Milwaukee $1260-238.0$
CFRN Edmonton, Alte DYBU Cobu. P.l. KPIN Casa Grande, Ariz. KCCB Corning, Ark. KBHC Nashvilie, Ark. KGiL San Fernando, Calif. KYA San Francisco. Callf. KSNO Aspen. Colo.
WMAM Westport. Conn. WNRK Newark, Del. WWDC Washington. D.C. WFTW Fort Walton Biorida WAME Miaml, Fla. WHAB Baxley, Ga. WBBK Blakely, Ga. WTJH East Point. Ga. KIFI Idaho Falls, Idaho KWEI Woiser, Ida. WIBV Belleville, Ill. WFBM Indianapolis, Ind. 1000 KWHK Hutchinson, Kans. 1000 WXOK Baton Rouge, La. 1000 WEZE Boston. Mass. 1000 WALM Alblon, Mieh. 250 WJBL Holland, Mich. 1000 KROX-Crookston, Minn. 1000 KDUZ Hutchinson. MInn. 1000 WGVM Greenville. Miss. 1000 WNSL Laurel, Miss. 1000d KGBX Springfield, Mo. 1000d KIMB Klmball. Nebr. 1000 WBUD Trenton. N.J.
1
KC. Wave Length
WBNR Beacon, N.Y.
WNDR Syracuse. N.Y.
WGWR Asheboro, N.C.
WCDJ Edenton. N.C.
WDOK Cleveland. Ohio
WNXT Portsmouth. Ohie
KWSH Wewoka.Seminole,
Oklahom
or 1

.	K
00	K
00	K
$0 d$	W
000	W
	W

1000
5000 5000 WWYN Erie, Pa.

1000
5000 WWYN Eric, Pa.
WPHB Philipsburg
WPO ra. Pe.

5000 5000 d W MUU Greenville, S.C. 5000 d KCOB Newton, Iowa Kan Arkansas City, Kans. 000 d WNOO Chattanooga, Tenn. WMCH Church Hill, Tenn. WDKN Dickson. Tenn. WCLC Jamestown. Tenn. KPSO Falfurrias. KWFR San Andelo, Tex. KTUE Tulia, Tex. KTAE Taylor. Tox. WCHV Charlottesville, Ve.
WBCR Christianshura WBCR Christiansburg, Va. WVVW Grafton, W.Va. WWIS Biack River Fallsis WEK2 Monroe, Wis. KPOW Powell. Wyo.

1270-236.1
CHAT Mediclne Hat, Alta. CJCB Sydney, N. S. CFGT St. Joseph d'Alma, WGSV Guntersville, Ala. WSIM Prichard, Ala. KBYR Anchorade. Alask
KDJi Holbrook, Ariz. KADL Pine Bluff. Ark KGOL Palm Desert, Calif. KCOK Tulare, Calif. WNOG Naples, Fla. WHIY Orlando, Fla WTNT Tallahassee, Ela. WKRW Carters vilio, GE, WGBA Colunbus, Ga. KNDI Honolulu, Hawal KTFI Twin Falis, Idaho WEIC Charleston. 11 WHBF Rock Island, ill. WCMR EIkhart, Ind WWCA Gary, Ind. WORX Madison, Ind. WAIN Columbia, Ky. WFUL Fulton, Ky. KVCL Winnfield, L WSPR Springflold, Mass. WXYZ Detroit, Mieh. KWEB Rochester. Min WVOM Toka, Miss. WLSM Louisvilio. Miss. KBUB Sparks Nov. WTSN Dover, N.H. WDVL Vineland, N.J. 50000 WHAC Niagara Falls. N.Y. 100
50
3. 100 $\begin{array}{lll}1000 \mathrm{~d} & \text { KWSU New Orleans, La. } & 5000 \\ 1000 \mathrm{~d} & \text { WEL Oak Grove, La, } & 500 \mathrm{~d}\end{array}$1001000 dWis.1000 d
1000 d
5000000 d
1000 d
1000 d
500 d
000 d
000 d
000 d
5000
000 d
000 d
500 dK
W
W
W
K
K
K
K
K
K
K
K
K
W
W
W
W
WWTCN MInneapolis, MInn.
KVOX Moorhead, Minn.5000
5000 d5000 d
5000KDKD CIInton. Mo. Minn. 10000KCNI Broken Bow. Nebr. $\quad 1000 \mathrm{~d}$
KTOO Henderson. Ney.KRZE Farmingiton. N.Mex. 5000 d
KAD$\begin{array}{ll}\text { WADO New York. N.Y. } & 5000 \\ \text { WROC Roehester. N. Y. } & 5000 \mathrm{~d}\end{array}$WSAT Salisbury, N.C. $\quad 5000 \mathrm{~d}$
WYAL Scotland Neck, N.C. 5000 d
WONW Deflanct, OhleWONW Deflance, Ohio
WLMJ Jackson, Ohio 1000
WLO
10000
10000K
K
\mathbf{W}
\mathbf{W}bee10000
10000
WCMN Arecibo P. PaWANS Andorson, 8.R.WJAY Mnderson, 8.CWJAY Mullins. S.WMCP Columbia, TonnWDNT Dayton, Tonn.WDNT Dayton, Ton
1000 d
10001000 dKWH Abilene, Tex.5000 d KLUE Longview. Tex.KRAN Morton, Tox.KRAN Morton, Tot
KVWG Pearsall.5000 d
500 d
5000 d
5000d W KDE Altavista, Va. Utah500 d
5000 d5000 d
1000 d5000
5000
1000 d
129
CFA
1000
1000 d
1000 10001000 d
1000 d
1000 d
5000
5000
$500 d$$\begin{array}{rlr}5000 & \text { KOMS EI Dorado. Ark. } & 5000 \mathrm{~d} \\ 500 \mathrm{~d} & \text { KUOA Siloam Spros., Ark. } 5000 \mathrm{~d}\end{array}$$\begin{array}{lll}1000 \mathrm{~d} & \text { KHSL Chico, Callf. } & 5000 \\ 1000 \mathrm{~d} & \text { KPER Gilroy, Calli. } & \text { 5000d } \\ \text { l000d KMEN San Bernardino, } & \end{array}$5000 d1000 d
5000
5000
500 d
WACL Santa Barbara, Callf. 5000 d
Wartford, Conn.
500 d500005000 d
1000 d
1000 d WCGC Bolmont N. ${ }^{\text {W. }}$
500 d
5000
50005000 d
1000 d500 d
50001000 d
5000 dWMPM Smithfield. N.CKBOM Mandan, N.Dak.WILE Cambridge, OhioKWPR Claremore, Okla.KAJO Grants Pass, Oref.WLBR Lebanon, Pa.WBHC Hampton. S.C.KNWC 8loux Fails. S.Dak.WLIK Newport, Tenn.KIOX Bay City, Tox.KHEM Big Spring. TexKEPS Eagle Pass. Tox.KFJZ Fort Worth. Tex.WTID Newport News, Va.WHEO Stuart. Va.KBAM Longulow, WeshWKYR Koyser, W.VaWRJC Mauston, WisWWJC Superior, WIs.5000 d
1000 d5000 d
$1000 d$
$5000 d$
$1000 d$
5000 d1000 d10001000 d

Ke.
KTRN Wave Length WPVA Colonial Hgts., Vax. 5 WAGE Leesburg, Va. $1000 d$ K WKWS Rocky Mount, Va. KAPY Port Argoles, Wash. WCOW Sparts, Wis.

1300-230.6
CBAF Moncto 7. N.B. WBSA Bogz, Sask WTLS Tallassee. Ala. WEZQ Winhe d. Ala. KWCB Searcs, Ark.
KROP Brawley, Calit KROP Brawley. Calit KWKW Pasasena, Calif. KVOR Colo. Spras., Colo. WAVZ Now Haven. Conn. WFFG Maraihon. Fla. WSOL Tampa. Fla. WNEA Nowman, G\& WIMO Winder, Ga KOZE Lewiston. Idaho WFRX W. Frankfort. III WHLT Huniington, Ind. WAAC Terrs Haute, ind. KGLO Mascn City. lowa WBLG Lexiagton, Ky. WIBR Baton Rouge. La FFB Baltiniore, Md. WJDA Qulecy. Mass. W000 Grand Rapids. Mich. NRBC Jachson, Miss. KMMO Marshall. Mo. KBRL McCook. Nebr. KPTL Carson City, Ne WOSC Fulton, N. Y. WEEE Rensselaer, N.Y.
WGOL Goldsboro. N.C. WLNC Laeronsburg. M.C. WSYD Mt Airy, N.C. WERE Claveland, Ohlo
WMVO Ms. Vernon. Ohio KOME Tulsa, Okla. KDOV Medford, Oreg. KACI The Dalles, Ores. WWCH Harlon, Pa. WTHT Hazloton. Pa. WLOW Aiken, S.C. WKSC Kershaw. S.C walz st George, S.C. KOLY Mobridge, S.Dak. WMTN Morristown. Tenn. WMAK Nashin Tox KTFY Browniteld, Tox. KGNS Laredo, Tex. KSTU Logan, Utah KOL Seattle, Wash. WKLC St. Albans, W.Va. 1000 d
1310—228.9
CKOY Ottawa, Ont.
 WHEP Foley, Ala.

$$
\begin{array}{r} 5000 \\ 5000 \mathrm{~d} \\ 1000 \mathrm{~d} \end{array}
$$

5000 d
500
5000
\qquad 1000 d1000 d
500

0	$\underset{\sim}{w}$
\mathbf{w}	
\mathbf{w}	
\mathbf{w}	

1000 d1000 d$r 000 \mathrm{~d}$5000
1000
1000 d500 d5000 0d

WJAM Marion. Ala. KBUZ Mesa, Ariz.
KBOK Malvern. Ark KIOT Barstow. Ark. KPOD Creseent City KDIA KTKR Taft. Calif. KFKA Greoley, Colo. WICH Norwith, Conn. WOOC Doland. Fla. WGKR Porry, Fla. WAUC Wauchula, Fla. WLKB Deeatur, Ga. WBRJ Waynesboro. Ga.
WBM Wost Point, Ga WBMK Wost Point, Ga: KLIX. Twin Falis, Idaho WISH Indianapolis, Ind. KDLS Perry, lowa KDLS Perry,
KOKX Keokuk. lowa KFLA Seott City, Kans. WTTL Madisonville, Ky. KIKS Sulphur, La. KUZN W. Monroe, La. WLOB Whand, Maine W0GC Woreester. Mass. WCOW Traverse City. Mich 5000 KR3I St. Peter, Minn.
\qquad Quebec 5000 .

Calif. 1 1000
1000 d 1000 5000
\square 500
1000 d 1000 d 1000 d

$$
\begin{aligned}
& 000 \mathrm{~d} \\
& 1000
\end{aligned}
$$

$$
\begin{aligned}
& 1000 \\
& 5000
\end{aligned}
$$

500 KVEE Conway. Ark. 500 KLOM Lompoc, Calif. 5000 KFAC Los Angeles. Calif. 500 d KLBS Los Banos. Calif 5000d WARN Ft. Plerce, Fla. 500 d WWAB Lakeland, Fla. 1000d WEBY Milton, Fia. 5000d WMEN Tallahassee, Fla. WMLT Dublin. Ga. 5000 WEAW Evanston. III. 5000d WRAM Monmouth, ili. 000d WRRR Rockford, ill. WOIC Columbia, S. C. C.
KE WKIN Kingsport. Tenn.
WMS WMSR Manchester, Tenn.
KVMC Colo. City. Tex. KXYZ Houston. Tex. KCPX Salt Lake City, Utah
WDMS Lyehbure WEET Richmond, Va.
KXRO Aberdeen. Wash. KXRO Aberdeen. Wash.
KHIT Walla Walla. Wash. WOMN Superior. Wis. WFHR Wisconsin Rapids. 133 330
ROS
$10 P$
$E E$
$0 M$
$A C$
$B S$
BR
RN
EAB
BE
MLT
AR
WRA
W.P. Ke. Wave Length 1000d WJPS Evansville, Ind,
5000 WGRB Greenburg. Ind 5000 WGRB Greenburg. Ind.
5000
KWWL Waterloo. 500 d K FH Wichita, Kans. 1000 WYGO Corbin, Ky. 1000 WMOR Morehead, Ky. lo00d KVOL Lafayotte. La.
5000 d
WASA Havre do Grace, Md. WCRB Waltham. Mas
WTRX Flint. Mieh. WCRB Flint. Miet.
WTRX Minneapolis.
WIOL W JPR Greenville. Miss.
WDAL Meridian, Miss. WOAL Meridian, miss. KGAK Gallup. N.Mex. 5000 KGAK Gallup. N.Mex, Mo. 1000 d 5000 WEVD New York. N. Y, 5000 5000 d
5000 d
WPVD New York. N.Y. NOW York. N. 5000 d WPOW NOW YWO. N.Y.
5000d WEBO Owego. N.Y. 5000d WHAZ Troy, N.Y. 1000 d W FIN Findlay, Ohio 1000d WFIN Findiay, Ohio 1000 d
5000 1000 d KPOJ Portland, Orea. 500 Ind WBLF Bellefonte. Pa. WICU Erle. Pa.
WFBC Greenvilie, S. S. WAEC Crossville, Tenn. WTRO Dyersburg. Tenn. KMIL Cameron. Tex. KSWA Graham, Tex. KINE Kingsville. Tex.
KYKM Monahans, Tox. KDOK Tyler, Tox. WBTM Danvilio, V WRAA Luray, Va. WOLD Marion, Va WESR Tasley, Va,
KFKF Beltevue, Wash. KCFA Spokane, Wash. WETZ Now Martinsville. 1000 d1000 d W BRT Bardstown. Kans.1000 KHAL Homer Ls

w$1000 d$ 5000 5000
5000
5000
10001000 d
1000 d5000
5000앙ㅁㅇ웅ㅇㅇㅇWHBL Shoboygan, Wis. $\quad 1000$
KOVE Lander. WYo.7
1340-223.7
CFGB Goose Bay. Nfld.CJAF Cabano, Que.
CFSL Woyburn. Sask. N.W.T
CFYK Yollow Knife.
CHAD Amos. Que.
CHAD Amos. Que.
HAD Amos, Que. N.S.
JLS Yarmouth. No.
t.
CJQC Quebec. Que.
CKAR. Pary Sound, On
CKOX Woodstock. Ont.
WKUL Cullman, Ala.
WJOI Florecte. Ala.
WJOI Florence, Ala
WFEB Sylmeauga. Ala.
WFEB Sylacauga. Ala.
KIBH Seward. Alaska
KIBH Seward, Alas
KIKO Miaml, Ariz.
KIKO Miaml, Ariz
KKIT Taos, N. M.
KNOG Mogales. Arlz
KNOG Mogales. Ar
KPGE Page. Ariz.
KENT Preseott Ar
KENT Prestott. ArIz.
KBTA Batesvilio, Ark.
KAAB Hot Sprlnes, Ark
KAAB Hot Springs, Ark
KBRS Springdale, Ark.
KBRS Springdale,
KATA Arcata, Calif.
KMAK Fresno, Calli
KDOL Mojave, Calif
KDOL Mojave, Calif.
KSFE Needies, Callif.
KSFE Needies, Calif.
KAOR Oroville, Calif.
KATY San Luls Obispo,
California
KIST Santa Barbara, Callf.
1000
-1000
KIST Santa Barbara, Callf.
KOMY Watsonville. Calf.

Wis. 5000
wis

1000
500 d

500 d| 1 k |
| ---: |
| 500 |
| 50 |5000

5000 d1000 d
5000 d
50005000 d
5000 d1000 d
1000 d

Wave Length W.P.

5000 KLIL Estherville, lowa 100 5000 KCKN Kansas City. Kans. 10000 5000 KSEK Pittsburg, Kans. 1000
1000 5000 WCMI Ashland, Ky. 1000 5000d WBGN Bowling Green, Ky. 1000 1000 d WNBS Murray, Ky. 1000 1000 WEKY Richmond, KY.1000
1000 W WAGN Menominee, Mich.1000 d WMBN Petoskey, Mich.
10001000 WEXL Royal Oak. Mich1000 d KDLM Dotroit Lakes. Minn.

500d WEVE Eveloth, Minn. 500wd KROC Rochester. Minn5000 KWLM Willmar. Minn.500 WJMB Brookhaven. Miss.5000 WAML Laurel, Miss5000 KXEO Mexico. Mo. 1000 d| 5000 | KXEO Mexico. No. Mo. | 1000 d |
| ---: | ---: | ---: |
| 5000 | KLID Poplar Bluff. Mo. | 1000 |
| 1000 d | KSMO Salem. Mo. | 1000 |

 KICK Springfield,
 d, Mo.
 KCAP Helenaid,
 KOMY Watsonvilio.
 KDEN Denver, USL Grand Junction, Colo.
 KVRH Salida. Colo.
 WNHC Now Haven. Conn.
 WOOK Washington, D. C
 WSLC Clermont, Fia.
 WTAN Clearwater, Fla.
 WROD Daytona Bch.i. Fia
 WDSR Lake City. Fla
 WaXT Palm Beach, Fla.
 WSEB Sebring. Fla.
 WNSM Valparaiso-Nicevillo.
 WAKE Atlanta. Ga.
 WGAU Athens. Ga.
WBBQ Augusta. Ga.
WGAA Cedartown, Ga
WOKS Columbus, Ga.
WBBT Lyons, Ga.
KAIN Nampa,
KAIN Nampa, Idaho
KPST Preston, Idaho
KSKI Sun Valloy. Idaho
WSOY Decatur, Ill.
WJPF Herrin, III.
WJOL Joliet, 111 .
WBiw Bedford, ind.
WTRC EIkhart, ind.
WTRC Elkhart, Ind.

000d	WLBC Muntie, Ind.
000 d	KROS Clinton, Iowa

WFAU Augusta, Maine
La.
aine
aine
1
WGAW Gardner, Mass.
WNBH New Bedford, Mass.
$\begin{array}{r}1000 \\ \\ 25 \\ 100 \\ \\ \\ \\ \\ \\ 100 \\ \\ \hline\end{array}$
WNBH New Bedford, Mass
WBRK Pittstold, Mass.
WBRK Pittshold ${ }^{2}$ Mass.
WLEW Bad Axe Mich
WLEW Bad Axe Mich.

[^4] 1000
1000
1000 000
1000
1000
1000 1000
1000 1000
1000

1000 000 $\begin{array}{ll}\text { KSMO Salem. Mo. } & 1000 \\ \text { KICK Springifid, Mo. } & 1000 \\ \text { KCAP Helena. Mont. } & 1000\end{array}$
$\begin{array}{ll}\text { KPAR Livingston, Mont. } & 1000 \\ \text { KATL Miles CIty. Mont. } & 1000\end{array}$
$\begin{array}{lr}\text { KATL Miles CIty, Mont. } & 1000 \\ \text { KATE Missoula. Mont. } & 250 \\ \text { KAB } & \end{array}$

WHITE'S RADIO LOG

Re. Wave Lengt WMON Montgomery, W.Va WOVE Welch, W.Va. WRIT Ladysmith, Wis. KSGT Jackson, Wyo. KYCN Wheatiand, Wyo
KWOR Worland, Wyo.

1350-222.1

CHOV Pembroke, Ont

 CJLM Joliette. Que. CKLB Oshawa, Ont. CKEN Kentville. N.S. WELB Elba, Ala. WGAD Gadsden. Ala. KLYD Bakersfield, Calif. KCIKC San Bernardino, Calif. ${ }^{10000}$ KSRO Santa Rosa, Calif. KGHF Pueblo. Colo.WNLK Norwaik, Conn.
WNLK Norwalk, Conn.
WN WY Putnam, Conn.
WINY Putnam, Co
WDCF Dade Clity, Fla. WXYC Ft. Myers, Fla WBSG Blackshear, Ga.
WRWH Cleveland, Ga. WRPB Warner Robins, KRLC Lewlston, Ida
WAAP Peoria, III. WAAP Peoria, III.
WJBD Salem, III.
WIOU Kokomo. Ind
KRNT Des Moines, Lowa
KMAN Manhattan, Kans. WLOU Loulsville, Ky. WSMB New Orleans, La WHMI Howell, Mich.
KDIO Ortonville, MInn. KDIO Ortonville, Minn.
WCMP Pine City, Minn. WKOZ Kosclusko, Miss KCHR Charleston, Mo. KBRX O'Neill, Nebr. WHWH Princeton. N.J KABQ Albuquerque. N.M. WCBA Cornlng. N. Y. WRNY Rome, N, Y. WHMT Black Mountain. N.C. WHIP Mooresville, N.C
WLLY Wilson, N.C. KBMR Bismarck, N. D WADC Akron, Ohio WCSM Celina, Ohio
WCHI Chillicothe, Ohio KRHD Duncan, Okla. KRLQ Tahlequah, Okla
KRVC Ashland, Oreg. KRVC Ashland, Ores.
KLOO Corvallis, Ored. WORK York, Pa
WWBR Windber, Pa.
WDAR Darlington, S.C. WGSW Gareenwood, S.C. WRKM Carthage, Tenn. KCAR Clarksville, Tex KTXJ Jasper, Tex. WBLT Ban Antonio. Tex. WFLS Fredericksb. WNVA Norton, Varg, Va. WAVY Norton, Va
WAVY Portsmouth, Va
WPDR Portage. Wis.

1360-220.4

CKBC Bathurst, Nfld. WLIQ Mobile, Ala. WMFC Monroevilie, Ala. WELR Roanoke, Ala KRUX Glendate
KLYR Ariz.
Clarksvilie, Ark. KFFA Helena, Ark. KFIV Modesto, Calle KGCK Ridgecrest. Calif. WDB San Dlego, Calif. WOBS Jarksord, Conn. WKAT MIami Beach, Fla, WSF Sanford, fla WAZA Binter Haven, Fia. WLAW Lawrencerill WMAC Mawrencevilte, Ga. WIYN Metter, Ga.
WLBK Dokalb, lit.
WVMC Mt. Carmel, III.
Ga. $\begin{aligned} & 1000 \mathrm{~d} \\ & 5000 \mathrm{~d} \\ & 5000\end{aligned}$ 5000 d
505000
5000
5000
500 d
5000 d
5000
5000
500
1000 d
1000 d
5000 d1000 d
1000 d
5000 d
50005000
1000 d
5004
500 d
500 d
500 d
1000d
5000
500
1000 d
1000 d
1000 d1000 d
50001000d
1000 d
1000 d
500 d
5000
500d
5000
5000
5000 d
10000
0000d
5000 d
1000 d
1000 d
5000
500 d
5000
10001000 d5000
500050005000 d
500 d
1000 d1000 d
1000 d
1001000 d
500 d
500d
500 d

Kc. Wave Length WGFA Watseka, III KHAK Cedar Rapids, lowa KXGI Ft. Madison, lowa KBTO EI Dorado, Kans. WFLW Monticello. Ky. KDBC Mansfleld. La, KVIM New Iberia, La. WEBB Dundah, La. WLYN Lynne, Mass. WKYO Caro, Mich. WKMI Karlamazoo, mich. KLRS Mountain Grove. Mo KWRV MeCook, Nebr, WNNJ Newton, N.J.
WWBZ Vineland, N.J.
WKOP WMNS Olean, N.Y.

1000 1000
10000 10000 1000 5000 d 5000 if. 500 5000
1000
1000
5000
1000 d
1000 d 250
1000
1000
1000
250
250
1000
KEYZ Williston. N.D.C.
N. N.C.
N.
D.
WPK Hillsboro, Oreg.
WPQR MCKeesport, Pa.
WPQR Mc Keesport, Pa,
WPPA Pottsville, Pa .
WELP Easley, S.C
S.
Tenn.
S.
WNAH Nashvilfe, TTenn.
KRAY Amarillo, Tex.
KACT Androws. Tex.
KRYS Corpus Christi, Tex.
KRYS Corpus Christi.
KXOL Ft. Worth. Tex.
Tex.
WHBG Harrisonburg. Va,
KFDR Grand Coulee. Wash.
WHJC Macoma, Wash.
WHJC Matawan, W.Va, 1000 d
WMOV Ravenswood, W.Va. 1000 d
WMOV Ravenswood, W.Va.
WBAY Gren Bay, Wis.

0 d

 WISV Virouqua, Wis.
 WMNE Menomonie, Wis.
 KVRS
 1370—218.8
 WBYE Calera, Ala.
 P.Q.
 KFLV Valleyfield.
 KTPA Prescott, Ark.
 KBUC Corona. Callif.
 KEEN San y. Calif.
 Cailif.

 Calif.
 if. fla
 KGEN Tulare, Calit
 WKMK Blountstown
WKMK Blountstow
WKOS Ocala, Fla,
WKOS Ocala, Fla,
WAXE Vero Beach,
WBGR Jesup, Ga,
WKLE Washinoter. Ga.
WKLE Washington, G
WPRC Lincoln', Ili,
Fia.
WTTS Bloomington, ind.
Ga.
Ga.
i, Ind.
WGRY Gary, Ind.
KOTH Dubuque, lowa
KGNO Dodge City. Kans.
KALN Dola, Kans.
WGOH Grayson. Ky
WTKY Tompkinsvilie, Ky.
KAPB Marksinsville, Ky.
WMHI Marksville, La, 10000
WKIK Braddocks Hes.id Md, 500 d
WKK Leonardtown, Md. 1000 dWKIK Leonardtown, Md,
WDEA Ellsworth, Me,
WGHN Grand Haven, M$\begin{array}{ll}\text { WGHN Grand Haven, Mich, } & 500 \mathrm{~d} \\ \text { KSUM Fairmont, Minn. } & 1000 \\ \text { KSU, }\end{array}$WMGO Canton, Miss.
 1000
1000
1000 1000
5000
500

Kc. Wave Length CKLC Kingston, Oat. CKLC KIngston, O

 WRAB Arab, Ala.WGYV Greenville, Ala.
KDXE N. Little Rock. Ar k. Ark.
la.

1000
500 d
5000
5000 d
5000
500 d
500 d
1000
5000
5000
1390
1000

$$
\begin{array}{r|r}
500 \mathrm{~d} & \text { WCC St. Petersbur } \\
5000 & \text { WAOK Atlanta, Ga. } \\
\text { 1000d } & \text { WSIZ Ocilla. Ga. }
\end{array}
$$

$$
\begin{array}{l|ll}
\text { 1000d } & \text { WSIZ Ocilla, Ga. } \\
\text { 1000d } & \text { KPOI Honouvlu, Hawail } \\
\text { 1000d } & \text { WRyI Rrazil }
\end{array}
$$

W.P.	Ke. W
5000	WISA Isabella, P.R.
1000d	WHPB Bolton, S.
1000d	WCSC Charleston. S.C.
1000d	KJAM Madison. S.D.
$1000 d$	WTJS Jackson, Tenn.
1000	KULP EI Campo, Tex.
5000	KBEC Waxahachie, Tex.
1000 d	KLGN Lopan, Utah
5000	WEAM Arington. Va.
500d	WWOD Lynchbura, Va.
1000 d 5000	WKLP Keyser, W. Va.
5000 5000	KBBO Yakima, Wash.
5000 d	1400-214.2
500 d	CKDH Amherst. N.S.
5000	CJFP Rivlere-du.Loup. Que.
1000	CKRN Rouyn, Que.
500 d	CKSW Swift Current, Sask.
1000d	WXAL Demopolis, Ala.
500d	WFPA Fti Payne, Ala.
1000d	WJLD Homewood. Ala.
1000	WJHO Opelika, Ala.
500 d	KSEW Sitka, Alaska
1000d	KCLF Clifton. Ariz.
1000	KJKJ Flagstaff. Arlz.
500d	KXIV Phoenix, Ariz.
5000	KTUC Tucson, Ariz.
500	K VOY Yuma. Ariz.
1000	KELD EI Dorado. Ark.
5000	KCLA Pine Blufir, Ark.
500d	KWYN Wynne, Ark.
5000	KPAT Berkeley, Calif.
5000	KREO Indio, Calif.
5000	KQMS Redding, Calif.
5000d	KSLY San Luis Obispo, Cal.
1000	KSPA Santa Paula, Callf.
1000	KHOE Jruckee, Ca
1000 d	KONG Visalia, Calif.
5000	KRLN Canon City, Colo.
1000d	KDTA Delta, Colo.
1000d	KFTM Ft. Morgan, Colo.
1000d	KBZZ La Junta, Colo.
1000d	WSTC Stamford. Conn.
1000d	WILI WIIllmantie, C
1000 d	WFTL Ft. Lauderdale
5000	WIRA Ft. Pierce, Fla.
500d	WNVE Ft. Walton Bch., Fla,

1000 d WB2I Brazil. Ind.
1000 WKJG Ft. Wayne, ind.
5000 KCIM Carroil. lowa
1000 d KCli Washington lowa
1000 d WMTA Central Cow
5000 WW KY Winchester, Ky. WYNK Baton Rouge, La.
WTTH Port Huron, Mich.
WPLB Greenville, Mich.
Greenville, Mic
Bralnerd, Minn.
KAGE Winona, Minn.
WDLT Indianola, Miss
WDLT Indianola, Miss.
KUDL Kanas City. Mo.
KUVR
Kansas City. Mo
Portsmouth
Nebr.
Zortsmouth, N.H
WBBX Portsmouth,
WAWZ Zarephath,
WFSR Bath, N.Y.
WBNX New York.
WBNX New York, N.Y
WLOS Asheville, N.C.
C. N.C.

| N.C. |
| :--- | 5000 c

 250
 1000
CKDH Amherst. N.S.
CJFP Rivlere-du.Loup. Que.1000CKRN Rouyn, Que.
CKSW
Swift Current, Sask.1000WMSL Decatur, Ala. 100000 d
250
WJLD Homayne, Ala.
250
1000
KSEW Opelika, Ala.
1000
250
250
1000 d
1000 d
5000d
WTOB Winston-Salem. N.
500
1000 d
5000
1000 c
1000
500 d
WPKO Waverly. Ohio
KSWO Lawton OkI
KMUS Mawskogee, Okla.
KBCH Ocean Lak, Ore.
KSRV Ontan Lako, Ore
WACB Ontario. Oreo.
1000
1000 d
00
WMLP Kittanning.
WAYZ Wliton, Pa.
WAYZ Waynesboro, Pa.
WAGS Bishopyill, R.I
- Pa.
WAGS Bishopville, S.C.
WGUS N. Augusta, S.C.
S.C.
Dak.
D.
KFCB Redfield, S. Dak
WYSH Clinton. Tenn.
WYSH Clinton, Tenn.
WWOW Conneaut, Ohio 500 d WKTJ. Farmington, Me.
KFDR Grand Coulee. Wash, 1000 d WWIZ Lorain, Ohio
1000d
5000
1000
WGMM Millington, Tan
KJET Beaumont. Tex.
KBWD Brownwood.

| KBWD Brownwood. |
| :--- | :--- |
| KCRM Crane, Tox. |

500 d	KCRM Crane, Tex.
5000 d	KTS EI Paso, Tex.
5000	KMUL Muleshoe, Tex.

 siod
 KBOP Muleshoe, Tox.
 KBOP Pleasanton, Tox
 WSYB Rutland. Vt.
 WMBG Richmond,
KMBG Richmond, Va
KRKO Everett, Wash.
KPEG Spokane, wash
WMTD Hinton, W.Va.
WBEL Beloit. Wis.
1390-215.7
0
CKLN Nelson, B.C.
WHMA Anniston, Ala.
KDQN DeQueen,
WHMA Anniston. Ala.
KDQN DeQueen. Ark.500
1000 d1000 d
1000 d5000
1000 d000 d
5000
00
KOQN DeQueen. Ark,
KAMO RoDers, Ark.
KGER Long Beach, Cali
KGER Long Beach, Calif
KCEY Turlock, Calif.$1000 d$
5000 d

Kc. Wave Length WLTN Littleton, N. H. KCHS Truth or Consequences KTNM Tucsmeari, N. Mex. WOND Pleasantvilie, N.J. WABY Albany, N. Y WSLB Opdensburg, WBMA Beaufort. N.C. WSIC Statesville, N.C. WLSE Wallace. N. C WHCC Waynesville.
WCNF Weidon. KEYJ Jamestown, N.Dak. WMAN Mansfield. Ohio KWON Bartlesville, Okla KNOR No man. Okl KNNO Cottage Grove, Ores. 10 WEST Easion. Pa. WFEC Harrisburg. Pa. WICK St. Marys, Pa WRAK Williamsport. Pa WGOS Co umbia. S. WGTN Georgetown. S.C. WJZM Clarksvilie, Tenn. WHUB Cookeville, Tenn. WLSB Copper Hill, Tenn. WGAP Maryville, Jenn. WHAL Srelbyville. Tenn.
KRUN Ballinger. Tex. KBYG Bio Spring, Tex,
KUNO CJrpus Christi, Tex KILE nr. Galveston. Tex. KGVL Greenvilie. Tex. KEBE Jacksonvile, J
KIUN PHCOs, Tex. KEYE Perryion, Tex KVOP Plainvlew, Tex.
KOWT Stamford, Tex. KOWT Stamford, Tex. KJEM Temple. Tex. KTFS Texarkana, T
KVOU Uvalde. Tex. KIXX Frovo, Utah WDOT 3urlington. Vt.
WINA Charlottesville. Va. WINA Charlottesvilo,
WHHV Hillsville, Va. WHIH Portsmouth, V a WHLC Sinchester, Va. KEDO Longview. Wash. KR WBOY Clarkesburg, W.Va. WRON Ronceverte. W.Va. WSPZ Spencer, w.Va. WKWK Wheeling. W.Va WBTH Whtamson, W. WBIZ E Clairs. W WBIZ Eau Clairs. Wis.
WDUZ Green Bay. Wis WRJN Racine, Wis. WROB Reedsburg. Wis KATI Caspar, Wyo. KODI Cody. Wyo.

1410-212.6
CFUN Vancouver, B.C. CHLP Montreal, Que WRCR Muscumbla, Ala. KTCS Fort Smith, Ark. KRML Carmel. Calif. KKOK Lompoc, Callif. KMYC Marysvilie, Calif. KCOL Ft. Collins. Colo WPOP Hartford. Conn. WDOV Dover, Del. WMYR rort myers, Fla WRFB Tallahassee. Fia. WRFB Griffin, Ga. WSNE Cummings, G WDAX MCRae, Ga. WLAQ Rome, Ga. WTIM Taylorville. Ill KARY Lafayette, Ind KGRN GLEM LeMars, lowa KCLJ Leavenworth, Kans. KWBB Wichita, Kans. WLEJ Bowling Green. Ky WHLN Harlan. Ky. KDES Alexandria. Le WDDW Halfway. Md. WHAG Halfway. Md WOKW Brockton, Mass. WGRD Grand Rap.. Mich. KLFD Litchfield, Minn.
KRWB Roseau, Minn.
WDSK Cleveland. Miss
W.P. Ke. Wave Length 250 WBKN Newton, Miss. 25 25
100 1000 WSET EImira. N. Y. Y.
1000 W. 000d WOTT Watertown, N.Y 1000 WSRC Durham, N.C. WING Dayton, Ohio KPAM Portland, Ore, KQV Pittsburgh. P WPCC Clinton, S.C. lo00d W Y M B Manning, S.C. 1000 WCMT Martin. Tenn. 000 d KBUD Athens, Tex. 000 KBAN Bowie, Tex. KVLB Cleveland, ${ }^{\text {Tex }}$
KXIT Dalhart, ${ }^{\text {Tex. }}$. KADO Marshall, Tex. KRIG Odessa. Tex.
KBAL
San Saba, Tex KNAL Victoria. Tex. WRIS Roanoke. Va. 000d 1000
1000 1000

$$
\begin{aligned}
& \text { WKBH LaCrosse. Wis. } \\
& \text { KWYO Sheridan, Wyo. }
\end{aligned}
$$ 250

WRDS S. Charleston.

1420-211.1

CKPT Peterborough, Ont.
CJMT Chicoutimi, Que.

1000 d$<$
$<$ WACT Tuscaloosa, Ala KPOC Pocahontas, Ark KRDO Culo. Sprgs., Colo. KSTN Stockton, Calif. k, Conn , Con WBRD Bradenton, Fla.
WDBF Delray Beach. WDBF Delray Beach, Fla.
WETH St. Augustine, Fla. WAVO Avondale Estates, Ga. 1000 d WRBL Columbus, Ga. WPEH Lousvilie,
WLET Toccoa, Ga. WLET Toccoa, Ga,
KOLL Honolulu. Hawall WINI Murphysboro, III. 500d WOMS Mavenport. lowa $\quad 5000$ KJCK Junction City, Kans. WTCR Ashiand. Ky.
WHBN Harrodsburg. WHBN Harrodsburg, K
WVJS Owensboro. Ky WVJS Owensboro, Ky WPEL Lafayette, La. WAMM Flint, Mich WKPR Kalamazoo, Mich KTOE Mankato Minn. WSUH Oxford, Miss. WQBC Vicksburg. Miss. KBTN Neosho, No. KSYX Santa Rosa, N. Mex. WALY Herkimer, N. Y. WACK Newark, N.Y. WLNA Peekskill, N.Y. WGAS S. Gastonia, N.C

$$
\begin{aligned}
& \text { WROX Clarksdale, Miss. } \\
& \text { WCII Columhis. Miss. }
\end{aligned}
$$ WVOT Wilson. N.C.

WCJU Columbia, Miss.

$$
\begin{aligned}
& \text { WJXN Jackson, Miss. } \\
& \text { wnKK Merintian Mis }
\end{aligned}
$$ WHK Cleveland. Ohi

KTJS Hobart. Okla.
KYNG Coos Bay, Ore

$$
\begin{aligned}
& \text { WOKK Meridian, Miss. } \\
& \text { WNAT Natchez, Miss. }
\end{aligned}
$$ WCOJ Coatesville. Pa. WCED DuBois. Pa. 10000 10000

5000 5000
5000
5000 WCRE Cheraw, S.C. WEMB Erwin Tenn WKSR Pulaski. Tenn KFYN Bonham, Tex. KTRE Lufkin. Tex. KGNB New Braunfels, Tex. KPEP San Angelo, Tex. WWSR St. Albans. Vt. WDDY Gloucester, Va. KITI Chehalis. Wash KUJ Walla Walla, Wash 1430-209.7
CKFH Toronto, Ont. WFHK Pell City, Ala. KHBM Monticello. Ark KAMP EI Centro, Calif KARM Fresno, Calif. KALI Pasadena, Calif KJAY Sacramento. Calif. KOSi Aurora, Colo Will Homestead, Fla Fla. WLAK Lakeland. Fla WPCF Panama City. Fla. WGFS Covington, Ga. WGFS Covington,
WRCD Dalton, Ga, WWGS TIfton, Ga. 000d WEEF Highland Park, Ill. 500d WCMY Ottawa. III. 1000d WIRE Indianapolis, ind. 1000d KASI Ames, Iowa

W.P. Kc. Wave Length | W.P. | Ke. Wave Length W.P | W. |
| ---: | :--- | :--- |
| 500d | WDIG Dothan, Ala. | 100 |

 WMAS Springfleld, Mass.
WATZ Alpena Townshlp.
Michigan 000
1000 WHTC Holland, Mich. WMIQ Iron Mtn., Mich WIBM Jackson. Mich. 250
1000 $\begin{array}{ll}\text { WKLA Ludington, Mich. } & 250 \\ \text { WHLS Port Huron. Mich. } & 1000\end{array}$ $\begin{array}{lr}\text { WHLS Port Huron, Mich. } & 1000 \\ \text { KATE Albert Lea, Minn. } & 250 \\ \text { KBUN Bemidji, Minn. } & 1000\end{array}$ $\begin{array}{ll}\text { KBMW Breckenridge, Minn. } & 1000 \\ \text { WELY Ely, Minn. } & 1000\end{array}$ WELY Ely, Minn.

$$
\begin{aligned}
& \text { KFAM St. Cloud, Minn. } \\
& \text { WROX Clarksdale, Miss. }
\end{aligned}
$$WROB West Point, Miss.KFTW Fredericktown, MWMBH Joplin. Mo.KIRX Kirksville, Mo.KWPM Wrens Mo.KXXL Woze MaKXXL Bozeman, Mont.KUDI Great Falls, MontKXLL Missoula, Mont.KRBN Red Lodie, Mont.KVCK Wolf Point, Mont.KWBE Beatrice. NebrKONE Reno. Ney.WKXL Concord. N.H. $\quad 250$WFPG Atlantic City, N.J. $\quad 1000$WCTC New Brunswick, N. J. 1000KLOS Albuquerque. N.Mex. 250

KLMX Clayton. N.Mex. $\quad 1000$ dKLMX Clayton. N. Mex. 1000 dKOBE Las Cruces. N.Mex. 250
KENM Portales, N.Mex. 1000
550004$1000 d$1000d1000 d500d WCMY Ottawa, Ill.

500 d	KMRC Morgan City, La.
1000 W	WNAV Annapolis, Md.

10000
10000 1000 d
1000d
5000
5000500 d
5000 WTJT Amherst. Mass.
WHIL Medford, Mass. WHIL Medford, Mass. WION Ionia, Mich. WBRB Mt. Clemens, Mich.
WLAU Laurel, Miss. KAOL Carrolition, Mo. WIL St. Louls, Mo,
KRGI Grand island. WNJR Nowark. N.J.
KGFL Roswell, N.M. WENE Endicott, N.Y. WMNC Morganton, N.C.
WDJS Mt. Olive, N.C. WRXO Roxboro, N. C WFOB Fostoria, Ohio WCLT Newark. Ohio
KALV Alva. Okla. KELI Tulsa, Okla. KGAY Salem. Oreg. WVAM Altoona. Pa.
WFRA Franklin. Pa. W NEL Caguas, P.R. WBLR Batesburg. S.C.
WATP Marion, S.C. KBRK Brookinos. S. Dak: WGYW Fountaln City, Ten
WENO Madison. Tenn. WENO Madison. Tenn.
WHER Memphis, Tenn. KSTB Breckenridge. Tex. KEES Gladewater, Tex.
KCOH Houston. Tex. KLO Ogden. Utah WIVE Ashland, Va. WDIC Clincho, Va,
KBRC Mt. Vernon, KBRC Mt. Vernon, Wash.
WEIR Weirton, W, Va WBEV Beaver Dam, Wis.

1440—208.2

CFCP Courtenay, B.C. WHHY Montgomery, Ala. KHDG Fayettevilio, Ark. KOKY Little Rock, Ark KVON Napa, Calif. KCOY Santa Maria, Calif WBIS Bristol. Conn. WABR Winter Park, WWCC Bremen, Ga. WGIG Brunswick. Gar
WRAJ Anna, Ill. WIOK Normal. Ill. WGEM Quincy, il WROK Rockford, Ili. WPGW Portiand. Ind.
KCHE Cherokee. Iowa KEWI Topeka, Kans. WCDS Glasgow. K
WKLX Paris. Ky. WEZJ Williamsburg, Ky. KMLB Monroe, La. WAAB Worcester, Mass WBCM Bay City, Mich.
WDOW Dowagiac, Mich. WCHB Inksteri, Mich. KEVE Golden Valley, Minn. WHHT Lucedale, Miss.
WSEL Pontotoc, Miss. WMVB Millvilie, N.J. WBAB Babylon, N.
WJJL Niagara Falls WSGO Oswego. N.Y. N.Y. WBUY Lexington. N.C. KILO Grand Forks. N.D
WHHH Warren. Ohio KMED Medford Ores KODL The Dalles, Ore WCDL Carbondale. Pa. WNPV Lansdale, Pa. WGCB Red Lion, P WQOK Greenville. S.C. WZYX Cowan. Jenn. WHDM McKenzie, Ten KEYS Corpus Christi, Tex. KDNT Demton, Tex. KETX Livingston, Tox. WKLV Blackstone, Va. KDNC Spokane, Wash. WAJR Morgantown, W.Va, WJPG Green Bay. Wis.

1450-206.8

 50001000 d
1000 d
5000
1000 d
500 d
5000

WHITE'S RADIO LOG

Kc. Wave Length
KGFF Shawnee, Okla. KORE Eudward, OK KFLW Klamath Falis. Oreo KBPM La Grande, 0 WLEU Erio, Pa. WDAD Indiana, Pa. WMPT Potsville, Pa. WMAJ State College, Pa. Pa. 25 WJPA Washington, Pa. WOSN Charleston, S.C. w MY Greenwood, S.C WHSC Myrtle Beach. KBFS Belle Fourche. S. WLAR Athens, Tenn. WOSG Chattanoooa. Tenn WSMG Greenevilie, Tenn. WLAF LaFollette, Tenn. WGNS Murfrecsboro, Tenn. KAYC Beaumont, Tex. KBEN Carrizo Spros.. Tex. KCTI Gonzales. Tex. KMBL Junction. Tex. KCYL Lampasas. Tex. KAMY McCamey, Tex.
NNET Palestin. Tex.
KSNY Snyder, Tex. KURA Moab. Utah
KDXU St. Georpe, Utan WTSA Barre,
WTSA Brattleboro, Vt. WENZ HIontand Springs, va WMVA Lexinpton, 1
KBKW Aberdeen, Wash. KCLX Colfax, Wash
KAYE Port Angeles, Wash. WPAR Parkersi, Wash. KFIZ Fond du Lac. Wis. KFLZ Fond du Lac. Wis WPFP Park Falls. Wis.
WRCO Richland Center, wis. 1000 KBBS Buffalo. Wyo.
KVOW Riverton, Wyo.

1460—205.4
CJOY Guelph, Ont.
CJNB N. Battleford, Saske WFMH Cullman. Ala WPNX Phenix City, Ala. KZOL Marianna, KTYM Inslewood, callf. KDON Salinas. Calif. KDEY Boulder, Colo. KYSN Colo. Spros., Colo WZEP DeFunlak prings. WMBR Jacksonvilie. Fla. WDMF Buford, Ga. WixN WRTL Rantoull, ill. WOCH North Vernon, Ind. KSO Des Moines. lowa KCRB Chanute, Kans. WRVK MI. Vernon. Ky KBSF Saton Rouoe, La WEMD Easton, Mid. WEET Erackton, Md. WBRN Big Rapids. Mich WPON Bontiac Mich . KDMA Montevideo, Minn WELZ Belzoni, Miss. KADY St. Charles, Mo. KRNY Kearney, Nebr. KENO Las Vegas. Nev woko albany, N.Y. WVOX Now Rochelle. N.
WHEC Rochester, N.Y. $\begin{array}{r}250 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 250 \\ 1000 \\ 1000 \\ 250 \\ 250 \\ 100 \\ 1000 \\ 1000 \\ 250 \\ 250 \\ 250 \\ 250 \\ 1000 \\ 250 \\ 250 \\ 1000 \\ 1000 \\ 250 \\ 250 \\ 1000 \\ 1000 \\ 1000 \\ 250 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 250 \\ 1000 \\ 1000 \\ 250 \\ 1000 \\ 1000 \\ 1000 \\ 250 \\ 1000 \\ \hline\end{array}$
W.P.

Tex. o. 25 1000 d 1000 d

10000

10000
10000
5000
5000
500d
5000 d
5000
500 d
5
1000
1000 d
1000 d
5000
1000 d
1000 d
1000 d
250d 5000 500 d
5000

Kc. WFVG Fuquay Length WRKB Kannapolis. N.C. $\quad 10000$

500 W WTS Bridgeport, Ala.
5000 WABB Mrare, Ala.
1000 d KHAT Mobise. Ala. 500d KGLU Safford. Ariz. 1000 d KWUN Berryvile. Ark 1000 KRED Eurcord, Calii. 1000 KYOS Merced. Calif. 1000d KSEE Santa Maria, Calis 5000d WSOR Pueblo, Colo. 1000 WAPG Areadi. Fin

Kc．Wave Length KXRX San Jose，Callif． WTOP Washington，D．C WSEM Donaldsonville，G KUMU Homaston，Ga． WPMB Vandalia，lil． WJBK Detroit，Mich KSTP St．Paul，Minn KDFN Doniphan，Mo． KPIR Eugene，Ore． WEAC Gaffney， \mathbf{S} ．\dot{C} ． K TXO Sherman，Tox． KANI Wharton，Tex

1510－199．1

CKOT Tillsonburg，On KALF
KASK Mesa，Ariz．
Ontario．Calit KASK Ontario．Calif． KIRV Fresno，Callf．
KTIM
San Ratael．Calif． KMOR Littieton，Colo． WNLC Now London，Conn． W222 Boynton Beach
WINU Hishland，lii． WJRC Joliet，iII． WKAI Macomb．lll．
KIFG lowa falls．
Iow WMEX Boston．Mass． LLKM Three Rivers，mich． KCCV Indopendence．Mo KTTT Columbus．Nebr． WBRL Greensboro．N．C WBRW Brewster．N．Y． WLAC Nashville．Tenn． KCTX Childress，Tex． KMOO Mineola，Tex． KROB Robstown．TEx． KSTV Stephenvilo，
KGA Spokane．Wash． KGA Spokane．Wash．
WAUX Waukesha，Wis．

1520－197．4

KGHT Hollister，Calif．
KACY Port Hueneme Calif． 10000
WVCF Apopka，Fla．
WGNP Indian Rocks Beach． WIXX Oakland Park，Fla． 1000 d WHOW Clinton．Ilf． WSVL Shelbyville，Ind KSIB Creston，lowa WRSL Stanford，Ky． KXKW Lafayette，La． WKJR Muskegon His．，Mich WYNZ Ypsilanti，Mich
KOLM Rochester，Minn WDSL Mocksvilie，N．C． KMNF Albuquerque．N．Mex． 500 d WKBW Buffalo，N．Y． WBNO Bryan，Ohio KOMA Okla．City，Okla 500 d KGON Oregon City，Oreg． 10000 WCHE West Chester，Pa．
WRAI Rio Piedras，P．R．

1530－196．1

WCTR Chestertown．Mo KCAT Pine Bluff．Ark WENG Englewood，Fla． KWLA Many，La． WRPM Poplarvilie．Miss． WIHM Lapeer，Nich． KMAM Butier，Mo． WCKY Cincinnati，Ohio KGTN Georgetuwn，Pa． KGTN Georgetuwn，Tex． KGBT Harlingen．Tex KCLR Ralls．TeX．${ }^{\text {Kand }}$

1540－195．0

ZNS Nassau，B．W．I．
CHFI Toronto，Ont．
KPOL Los Angeles，Callf． WSMI Litchfield．III． WBNL Boonville，Ind． WLOI Laporte，Ind． KXEL Waterloo，lowa KLKC Parsons．Kans． WDON Wheaton，Md． WPTR Albany，N．Y． WIFM Eikin，N．C． WABQ Cleveland．Ohio WNIO Niles，Ohio KWFS Eugene，Ore．
W JMS Philadelphia，Pa．1000
1000 d1000 d
500 d
10000
1000 d
250 d
ㅎेㅇ10000 d500 d
50000 100002501530
250 d
500001000d 1000 d 1000 d
5000 d 5000 d
500 d
500 d
250
500002500

$1000 d$1000 d
500001000 d
1020

250

10000

 50 100 1000 d250 d25001000
50005000
50
1000d
1000

W．P．Kc．Wave Length WPTS Pittston，Pa． WPME Punxsutawney， WPHC Waverly，Tenn WPHC Waverly，Tenn．
KCUL Ft．Worth．Tox KCUL Ft．Worth，Tex．
KGBC Gaiveston，Tex． WWWW Richmond，V a．

ミス

$$
11
$$

－

1000 d
10000 d
1000
500
1000 d 10000 500 d
1000 d
1000 d
500 d
5000
h．

$$
\begin{array}{r}
500 \\
10000
\end{array}
$$${ }^{5000} 1$500 d

1000 d1000 d
250d500d
250 d
50000 10000500a．1000 d
1000 d 1000 d
5000 d
KBLR Bolivar, Mo.
KGMO Cape Girardeau, Mo. 5
KKHI San Fran.; Callf.
KDAB Arvada, Colo.
WRIZ Coral Gables. Fla.
WHT
WRIZ Coral Gables,
WORT Now Sayrna B
WORT Now Smyrna
Fla.
Ga.
ill
JIL Jacksonville, ill.
CTW New Castie, Ind.
WIRV Irvine. Ky.
WLUX Baton Rouge, La.
KOKA Shreveport. La
WSER Fremont, Mich.
WSHN Fremont, Mich
WSAO Sanitobia, Miss.
WSAO Sanitobia, Mis
KGMO Cape Girardeau, MO 5090
KKJO St. Joseph, Mo
KKJO St. Joseph, MO.
WCGR Canadaiqua, N.
WBAZ Kingston. N.Y
WBVM Gtica, N.Y.
WPXY Grenvilie. ${ }^{2}$.
WNOH Raleigh.
WTYN Tryon, N.C.
WPEG Winston.Salem, N.C.
N.
N.
WPEG Winston.Sale
KUTT Fargo, N.D.
KUTT Fargo, N.D.
KMAD Delaware, Ohi
onio
ohlo
kla.
Okla.
KMAD Madill, Okla.
WLOA Braddock, Pa.
WTTC Traddock, Pa.
WKFE Yauco, P.R.
WKFE Yauco, P.R.
WBSC Bennetsvile. S.
WTHB N. Augusta, S.C
e. s.c.
s.c.
WTHB Bennotsville. S.
s.c.550 d KBEW Plue Earth，Minn．

W．P．$\underset{\substack{w \\ \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \\ \hline \\ \hline \\ \hline}}{ }$
Wave Length WMES Ashburn，Ga． WGHC Clayton，Ga．
WEAD College Park，Ga WEAD College Park
WGSR Millen，Ga．
WOKZ Alton，
w
WFRL
WBEE
Harvey，
WBE ill．WBEE Harvey， WTII，WILO Frankfort，Ind．
WAWK Kendallille，Ind．
WOWI New Albany，Ind．KMCD Fairfield，lowaKJFJ Webster City，lowaKNDY Marysville，KansKWSK Pratt，Kans．WKKS Vanceburg，KyWABL Amite．La．
KMAR Winnsboro, La
WMAR Winnsboro, ${ }^{\text {Ka }}$
WAQE Towson, Md.
WPEP Taunton. Mass.
WMLO Beverly, Mass.
WPEP Taunton. Mass.
WMLO Beverly, Mass.
WDEW Westheld, Ma
WFUR Grand Rapids.
Michigan

 W.P. \(\mid K\)
 Wave Length W．P．
W．P．Kc
1000d WPYB Benson，N．C．
250d
000d $\underset{~}{\mathbf{w}} \underset{ }{\mathbf{w}}$ WANB Waynesturg，Pa． 1000 d
500 d
250d WYRG Orangebur － 250d WSKT Colonial Village，Tenn． 250 d WSKT South Knoxville，Tenn． 250 KKAL Denver City，Tex． 250 d KGAF Gainesville．Tex． 250 d KIRT Mission．Tex KTLU Rusk Tex． 50d KWED Seguin．Tix．

 500d KBYP Shamrock, Tox

 000 KBGO Waco. Tex.

 000 WILA Danville, Va.

 5000d WPUV Pulaski, Va.

 OU0d WTTN Watertown, wis.

 \(1000 d\)
 $500 d$
$1000 d$
$250 d$
1000
$1000 d$
$5000 d$
$1000 d$
500d 1590-188.7WWATM Atmore，Ala．0000d
KUXL Golden Valiey，
500d KKPBA Tuscumbla，AKLIV Pane Bluff．Ark．WONA Winona．MIss．250d KUDU Ventura，Califif．WAEX Lexington，Mo．250d KUDU Ventura，Calif．WAFS Amsterdam．N：YWBUZ Dundee，N．Y．WAPC rredonia، N．Y．WTLK Taylorsudi，N．Y．
lou0d WB
W NCA Siler City in. N.C.
WCLW Mansfield, Ohio
WCLW Mansfield, Ohio
WPTW Piqua, Ohio
KTAT Frederick, Okla.
KOLS Pryor, Okla.
KWAY Forest Grove, Oreg.
KOHU Hermiston, Oreg.
KOHU Hermiston, Orea
WBDS Danville, Pa.
WBUX Doylestown,
d
1000 d
1000 dAla．1000050000 d
50000 d500 d
1000010000
10000 d
$F 1 \mathrm{l} .250$
Fla. 250
10000 d
10000 d
1000 d
250
500 d
1000 d
1000 d
$250 d$
250
5000 d
5000

250 d
1000 d
KCIN Victorville, Calif.
WBRY Waterbury, Conn.
WBRY Waterbury, Conn.
WOWY Clewiston, Fla.
250 d
1000 d
WILZ St. Petersburg Beach,
5000 d
10000
2000
250 d
1000 d
50000

N.C. 10
250
$500 d$
1000
-
そそそミ
WFGN Gattney, S.C.
WLSC Loris. S.C.
WLSC Loris. S.C.
WCLE Cleveland, Tenn.
KWBC Navasota, Tox
KW BC Navasota, Tex
WKYE Bristol, Tenn
s.c.
500 d
250
250
500 d
1000 d
$500 d$
500
$500 d$
250
250
10000
10000
$1000 d$
WTRB Ripley, Tenn.
KZOL Farwelf, Tex.
KVLG La Grangex.
1000 d
500
000d KTER Terrell, Tex.
KWR Serrell, fex.
000d
1000
KWWIC Salt Lake Clty, Uiah
WSWV Pennington Gap, Va.
000d
1000
KWWIC Salt Lake CIty, Uiah 5000
$250 d$
WSWV Pennington Gap, Va. 1000 d
1000 d
d WELE
WILZ St. Peterstour Florlda
WELE S. Daytona Bch..

．
WYTI Rocky Mount, Va.
WEER Warrenton. W.Va.
WEER Warrenton, W.V
WAPL Apoleton, Wis.
WYRL Bristol, Tenn.
WPTN Cookeville. Tenn.
$1000 d$

WHITE'S RADIO

U. S. Television Stations by States

Territories and possessions follow states. Chan., channel number; asterisk (*) indicates educational station.

ALABAMA		Location San Diego	C.L. Chan. KFM.B.TV	Location Atlanta	C.L. Cho wagativ	Location Davenport	C.L. Chan woc.tV
Andalusia Birmingham		(Tijuana, Mex.) San Francisco	$\text { KETV } 6$		$\begin{aligned} & \text { WSB.TV } \\ & \text { WETV } \end{aligned}$	Des Moines	KRNT KDPS.
	$\text { WBRC.IV } 10$		KGO.TV ${ }^{\text {KPIX }}$	Augusta	WJBF	Fort Dodge	
Decatur	MSL.TV 23		PIX ${ }^{\text {Pr }}$	Columbus	RDW.TV RBL	Mason City	GGOTVV
Dothan	WTVY 4		KRON-TV 4	columbus	WTVM		
Huntsvile	WAAY.TV 25	$\begin{aligned} & \text { San Jose } \\ & \text { San LLuis Dispo } \\ & \text { San Luateo } \\ & \text { Santa } \\ & \text { Santarbara Barbara } \\ & \text { Stockton } \end{aligned}$	KBAY.TV ${ }^{8}$	Macon	WMAZ.TV		Kww
	AFG.TV 31		KSBY.TV 6		WSAV.TV	Waterl00	KWWL
Mobile	WALA.TV		KCSM.TV 14		WTOC.TV		SAS
Montgomery	KRG.TV		KEV. ${ }^{\text {KOVR }}$	Waycross	WEGS.TV	En	C
	SFA.TV 20	vis	KICV.TV 12		III	Goodiand	KLOE.TV
nford	$\begin{aligned} & \text { ACIQ } \\ & \text { WSLA } \end{aligned}$	LO	ADO	Hilo		Graat Bend	KCT
ALASKA		Colorado Sprin			${ }_{\mathrm{KH}}$	Hutchinson	
		coloraso Sprin	Do.TV 13	Honolulu	MB.	Pittsbu	KOAM TV
Anchorago	ENITV 2		KLZ.TV ${ }^{\text {K }}$		KONA	Tope	TV
Falrbanks	AR.TV 2		OA.TV	Walluku	VH.TV		KAKE.TV
Juneau	KINY.TV ${ }^{11}$		KTVR 2			KENTUCKY	
RIZONA		Durando	KJFL 6			exingt	WLEX.
		Girand Junction	REX-TV 5				27
DouglasPhoenix	A	Pueb	$\begin{aligned} & \text { KREY-TV } 10 \\ & \text { KCSJ.TV } \end{aligned}$	Boise	кBOI.TV	Louisville	WAVE-T
	KAET ${ }^{\text {O }}$	Sterling	kTVS	Idaho	K1D-TV		WASSLV
	HO.TV	CONNECTICUT		Lewiston	KLEW	Paducah	PSD.tV
	KTAR.TV 12	Bridgeport	43	Twin falls	CMVT		IANA
	LD.TV 13	Hartford	3		IS	Alexandr	KALB-TV 5
	KUAT -6		WHCT-TV 18				
Yuma	KIVA 11	New Britain		Champaign	WCIA		
ARKANSAS			TV 53	Chicaso	wBBm.tV	Lafayette Lake Charles	V ${ }^{10}$
		DELAWARE			WBK8	Monr	OE
Ft. Smith	KFSATV ${ }^{\text {KFOY-TV }}$	Wilminoton	Whyy-tV 12		相		
Litle Rock	KFOY-TV 9					New Orieans	OSU.TV ${ }^{6}$
	KTHV 11	DIST. OF	COLUMBIA				
Texarkana	ксмC.TV ${ }^{\text {KATV }}$	Washinoton	$\cdot T V{ }^{26}$	Danville Deeatur	WT	Shreveport	\checkmark
CALIFORNIA			WOOK-TV 14	Harrisbur	WSIL-TV		KTBS.TV
			RC.TV	Sallo	EE	MAINE	
Bakersfield	KBAK-TV 29 KERO.TV 23		TOP.TV		w	Augusta	10
Clico ${ }_{\text {Cl }}$	KLYD.TV 17				GEM		WABITV ${ }^{\text {a }}$
	KHSL.TV 12			Rocktor	REX.TV		WMEB.TV •12
	KECCTV	Daytona Beach Fort Pierce-Ver	WESH TTV ${ }^{2}$	Rock Island	$\mathrm{HBF}^{\text {c }}$	Poland Sprine Portland	WTW-TV ${ }^{8}$
Eureka	KM-TV	Fort	WINK-TV ! 11	Sprinof	WILL.TV. 12	Presque I	WGAAN-TV ${ }^{13}$
Fresno		jacksonville	WFGA.TV 12	INDIANA			WMEM-TV 10
	KAIL 53					MARYLAND	
	KJEO 47	Mlami	WCKT	Bloomington		Baltimo	
Hanford Los Angeles	KMJ.TV KDAS-TV 24		WLBW-TV 10	Evansville			WBAL.TV 11
	$\begin{array}{cc} \mathrm{KABC} \mathcal{T} V & 7 \\ K C O P & 13 \end{array}$				WEHT	Salisbury	$\begin{aligned} & \text { WMAR-TV } \\ & \text { WBOC.TV } \end{aligned}$
	HJTV 9	Orlando	wobouv	Ft. Wayne	WANE.TV	MASSACHUSETTS	
	EX-TV ${ }_{34}^{22}$	Palm Beach Panama CIty WPTV WJOM.TV			W WPIA		
				Indianapolis	WFBM.	${ }_{\text {Boston }}$	WCOC ${ }^{\text {W }}$
1	BC		WEAR-TV 3				-2
	11	St. Petersb	SUN-TV ${ }^{38}$	Lafay	FAM.TV 18		7
Oakland Redding Sacramen	KTVU 2	Tampa		Munt	WBC.TV 49	Greenfle	P ${ }^{32}$
	VIP.TV ${ }_{\text {KXTV }}$		3	South Bend			V ${ }^{\text {P2 }}$
	RA-TV 3	W. Palm	WEAT.TV 12	Terre Haute	WTHI.TV 10	Worcest	WWOR-TV 14
	KVUE 40			IOWA		MICHIGAN	
Salinas San Bernardino	KSBWV.TV ${ }_{\text {KVI }}$	GEORGIA					
	KCHU-TV 18			Ames Rapids	KCROITV ${ }^{\text {W }}$	Bay city	WNEM.TV 5
	KVCR-TV ${ }^{\text {24 }}$	Athens	WGTV ${ }^{8}$ \|	Codar rapias	WMT.TV	Cadillac	

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Location \\
Cheboygan \\
Detroit
\end{tabular}} \& C.L. Chan. \({ }^{\text {L }}\) \& Carlsbad \& L. Chan. \& Location \& C.L. Chan. \& Location (Ciudad Juar \& \[
\begin{aligned}
\& \text { C.L. Cho }
\end{aligned}
\] \\
\hline \& OM.TV \({ }^{\text {B }}\) \& Carls bad Clovis \& KAVE-TV \({ }^{6}\) \& OREG \& \& \& \\
\hline \& \& \begin{tabular}{l}
Roswel \\
Santa Fo
\end{tabular} \& KSWS.TV \({ }_{\text {KVSFTV }}\) \& Coos Bay Corvallis \& KCBY-TV
KOACTV \& orth \& \({ }_{\text {VTV}}{ }_{\text {V }}\) \\
\hline \& WXYZ.TV \({ }_{7}{ }^{\text {W }}\) \& \& \& \& KVAL.TV 13 \& Harlingen \& KGBBT.TV
KPRC.TV

S

\hline (Windsor, Ont.) \& CKLWWRV ${ }^{9}$ \& NEW \& YORK \& \& KOTI 2 \& \&

\hline Grand Raplds \& WOOD.TV 8 A \& Albany \& WTEN 10 N \& Medord \& KBESTV \& \& KTRK.TV ! 3

\hline \& WZZM.TV ${ }^{3}$ \& \& WAST
WTRI
W5 \& Portland \& KGW.TV 8 \& Laredo \& KGNS. TV

\hline Kalamazoo \& \& \& WCDA 41 \& Portand \& K0AP.TV * 10 \& Lubbock \& KCBD.TV

\hline Marquet \& WLUC.V ${ }^{6}$ B \& Binghamton \& WINR.TV 40 \& \& KATU.TV \& Lufkin \& KTRE.TV 9

\hline unt \& WCMW-TV 14 \& Buffalo \& WBEN.TV 4 \& \& KPTV 12 \& Midiand \& KM1D.TV 2

\hline Saginaw \& WKNX-TV 57 \& \& WNED.TV '17 \& Rosebu \& \& \& VKM.TV 9

\hline Traverse C \& WPBN-TV 7 \& \& WKB \& \multicolumn{2}{|l|}{PENNSYIVANIA} \& \& ¢0sA

\hline \multicolumn{2}{|l|}{MINNESOTA} \& \multirow[t]{6}{*}{| Carthage Elmira |
| :--- |
| New York |} \& \& Altoona \& WFBG.TV 10 \& \&

\hline Alexandrla \& MT 7 \& \& W \& \& 12 \& Richards \& 8

\hline Alustin \& MT \& \& \& Harrisburs \& 21 \& San Ang \& KA

\hline Duluth \& WDALM.TV \& \& CBS.TV 2 \& Harrisbure \& TPA 27 \& San Antonio \& KUAL.TV 4i

\hline Mankato \& C-TY ${ }^{12}$ \& \& V ${ }^{9}$ \& Johnstow \& WARD-TV 56 \& \& KNSLRN ${ }^{\text {S }}$

\hline Minneapolis \& $\stackrel{9}{4}$ \& \& V \& Lancaster \& WGAL.TV 8 \& \& ${ }^{12}$

\hline \& 11 \& \& WNYC.TV 31 \& Lancas \& \& \& V ${ }^{4}$

\hline Rochester

St. Paul \& \& Plattsburs \& WPTZ.TV 5 \& | Lockhave |
| :--- |
| New Cast | \& WBPZ.TV ${ }^{\text {WSTS }}$ W3 \& \&

\hline St. Paul \& $$
\begin{aligned}
& \text { KSTP:TV } \\
& \text { KTCA:TV } \\
& \hline 2
\end{aligned}
$$ \& Rochester \& \[

$$
\begin{aligned}
& \text { WHECDV } 10 \\
& \text { WOKR-TV }
\end{aligned}
$$
\] \& New Castlo \& WCAU.TV 10 \& Texarkana \& KTAL.TV 6

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MISSISSIPPY}} \& \& ${ }^{5}$ \& \& WUHY:TV 35 \& \& 10

\hline \& \& \multirow[t]{3}{*}{Schenectady Syracuse} \& GB \& \& PCA.TY \& Weslaco \& RGV.TV ${ }^{\text {s }}$

\hline Columbus Greenwood \& $$
\begin{aligned}
& \text { WCBI-TV } \\
& \text { WABGTV }
\end{aligned}
$$ \& \& EN.TV \& Pittsburgh \& KDKA.TV 2 \& \& KSYD:TV

\hline Jackson \& WJTV 12 \& \& WSYR-TV ${ }^{3}$ \& \& \& \&

\hline Laurel \& AM. TV \& \& \& \& \& \& A

\hline \& 11 \& NORTH \& AROLINA \& Seranton \& WNEP.TV ${ }^{16}$ \& Ogden \& KVOG.TV 9

\hline Tupelo \& W \& Ashoville \& 62 \& Wlikes-Barre \& WBRE.TV 28 \& Provo \& KBYU-TV II

\hline \multicolumn{2}{|l|}{MISSOURI} \& \& WUN \& \& \& Salt Lake \& | KSL-TV |
| :--- |
| CPX-TV |
| 1 |

\hline e Girarde \& KFVS.TV 12 \& Charlott \& WBiV ${ }^{\text {che }}$ \& RH \& SLAND \& \& KUED ${ }_{\text {KUTV }}$

\hline umbia \& KOMUTV ${ }_{\text {KHOA.TV }}$ \& \& WTVI 42 \& Providence \& WJAR-TV 10 \& \&

\hline annisal city \& KRCG.TV 13 \& Durham \& WTVD ${ }_{\text {W }}$ W \& \multicolumn{2}{|l|}{WPRO-TV 12} \& \multicolumn{2}{|r|}{VERMONT}

\hline $$
\begin{aligned}
& \text { Joplin } \\
& \text { Kansas city }
\end{aligned}
$$ \& K00E.TV 12 \& \multirow[t]{4}{*}{Greensboro Greenville Ralolgh Washington Wilmindton

\qquad} \& MY-TV \& \multicolumn{2}{|l|}{SOUTH CAROLINA} \& Burlington \& wCAX-tv

\hline \& KCSD. TV \& \& TV \& An \& AIM-TV 40 \& \& GINIA

\hline \& KMBC.TV \& \& \& \& V 2 \& \& INIA

\hline sville \& ${ }^{\text {KTVO }}{ }^{3}$ \& \& WAY 3 \& \& W1TV ${ }^{\text {che }}$? \& | Bristol |
| :--- |
| Hampto | \& \[

$$
\begin{aligned}
& \text { NCYB-TV } 5 \\
& \text { NYECTV } \\
& \hline
\end{aligned}
$$
\]

\hline Joseph \& \& Winston-Salem \& WSJS.tV 12 \& Clemson
Columbia \& WIS.TV io \& Harrisonbure \& WSVA-TV 3

\hline St. Louls \& \& NORTH \& DAKOTA \& \& V 29 \& | Lynchbura |
| :--- |
| Norfolk | \& WLVA-TV 13

\hline \& \& Bismarck \& Kxmb-tV \& Florence \& \& \& WTAR-TV

\hline \& KTVI ${ }_{\text {KTV }}$ \& \& KFYR.TV \& Greenville \& $$
\begin{aligned}
& F B C-T V \\
& W N T V \\
& \hline
\end{aligned}
$$ \& Petersbury \&

\hline Sedalia Springfield \& SS.TV ${ }^{6}$ \& | Dicklnson |
| :--- |
| Fargo | \& \& Spartanbu \& WSPA.TV 7 \& \& | RVA-TV |
| :--- |
| WTVR |
| 12 |

\hline \& KYtV 3 \& \& $$
\begin{aligned}
& \text { GOTN } \\
& \text { KEN }
\end{aligned}
$$ \& SOUTH \& DAKOTA \& Roanoke \& \[

$$
\begin{aligned}
& \text { WOBIVIV } \\
& \text { WSLS.TV }
\end{aligned}
$$
\]

\hline \multicolumn{2}{|l|}{MONTANA} \& \multirow[t]{2}{*}{Grand Forks Minot} \& KFME is \& \multicolumn{2}{|l|}{Aberde} \& \&

\hline Billings \& KODK-T \& \& MC.TV \& \& \& \multicolumn{2}{|r|}{WASHINGTON}

\hline \& KGALI-TV \& Pembi \& CND.TV 12 \& Mitec \& K \& Belllingtam \& 12

\hline Gilend \& KXGN-TV \& Valley \& KXJB-TV
KUMV.TV
8 \& \& KRS \& \&

\hline Great Falls \& KFBB-TV \& Williston \& Kumv.iV \& Relia \& KPLO.TV ${ }^{6}$ \& Richland \&

\hline \& Khiv 12 \& \& HIO \& Stoux \& KELO.TV
KSOO.TV
11 \& Seattle \& KCTS.TV 9

\hline Kalispell

Missoula \& $$
\begin{array}{cc}
\text { KULR } & 9 \\
\text { KMSO.TV } & \text { IS }
\end{array}
$$ \& Akro \& \& Vermilion \& KUSD.TV 2 \& \& K

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NEBRASKA}} \& \multirow[t]{2}{*}{Cincir} \& 8 \& \multicolumn{2}{|r|}{TENNESSEE} \& Spo \& KOMO-TV ${ }^{\text {KHO.TV }}$

\hline \& \& \& KRCW.T \& Chattanoo \& DEF.TV 12 \& \& KREM

\hline Grand Istand Hastings \& \[
$$
\begin{gathered}
\text { KGIN.TV } \\
\text { KHAS.TV } \\
\text { KN }
\end{gathered}
$$

\] \& \& CIN-TV 54 \& \& | GP-TV |
| :---: |
| WTVC | \& Tacoma \& 56

\hline Hay Springe \& KDUH-TV ${ }^{\text {K }}$ \& Cleveland \& WEFWS \& Jackson \& WOXIVY ? \& \&

\hline ${ }_{\substack{\text { Heyes } \\ \text { Kearney }}}^{\text {centor }}$ \& KHOL-TV 13 \& \& WWW.TV \& ${ }^{\text {johnson City }}$ \& WAHLTV ${ }^{\text {W }}$ W \& \&

\hline Lincoln \& KOLN \& Columbut \& BNS.TV 10 \& \& \& Yakin \& $\begin{array}{ll}\text { KIMA.TV } & 29 \\ N \text { DOPTV } & 23\end{array}$

\hline \& \& \& WOSU.TV ${ }^{34}$ \& \& BQ-TV 13 \& \&

\hline | North Platto |
| :--- |
| Omaha | \& KMTV \& Dayton \& \& \& \& WEST \& VIRGINIA

\hline \& W.TV \& \& \& \& OCN-TY -3 \& \&

\hline Scottsblur \& KSTF 10 \& \& $\stackrel{28}{14}$ \& Nashville \& LAC.TV 5 \& ${ }^{\text {Bluan }}$ \& ${ }_{8}^{6}$

\hline \multicolumn{2}{|l|}{NEVADA} \& Toledo \& Whe.iv 30 \& \& SM.TV 4 \& Huntington \& WJPB.TV ${ }^{5}$

\hline Henderson \& KORK.TV \& \& WGTE.TV 30 \& \& \& \& WSAZ.TV 3

\hline Las Vegas \& KLAS.TV ${ }^{8}$ \& Youngstown \& \& \& \& \&

\hline R \& \& \& KBN-TV 27 \& $7{ }^{\text {a }}$ Abliene \& KRBC.TV
KULF.TV

S \& Parkersburg Wheeling \& | WTAP.TV |
| :--- |
| wTRF.TV |

\hline \& \& Zanesville \& HIZ-TV is \& 8 Amarillo \& KFGOA.TV ${ }^{\text {d }}$ \& \&

\hline \multicolumn{2}{|l|}{NEW HAMPSHIRE} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{OKLAHOMA}} \& \multicolumn{2}{|l|}{A ${ }^{\text {a }}$ KVII $?$} \& \multicolumn{2}{|r|}{WISCONSIN}

\hline \& \& \& \& Austin \& KTBC.TV ? \& Eau Claire \& WEAU.TV 13

\hline Manch \& WMUR-TV 9 \& $9{ }^{\text {Ada }}$ Ada \& KTEN 10 \& \& KFOM.TV 6 \& Green Bay \& WBAY-TV 2

\hline NEW J \& JERSEY \& Enid \& Co. \& Big Spring \& KEEYY-TV \& \& WLUK.TV ${ }^{5}$

\hline Nowar \& WNDT.TV *I3 \& 3 Lawton Oklahoma Clty \& y KETA 13 \& 3 Corpus Chrlat \& KRISS ${ }^{\text {K }}$ K \& Hurley \& WAEO-TV 12

\hline \& \& \& KH-TV 25 \& \& \& La Crosse \&

\hline \multicolumn{2}{|l|}{NEW M} \& \& KY.TV 4 \& Dallas \& KERA.TV •13 \& Madison \& - ${ }^{\text {a }}$

\hline Albuquerque \& TV 13 \& \multirow[t]{3}{*}{Tulsa} \& KOTV . ${ }^{6}$ \& \& \& \& Kow.tv 27

\hline \& \& \& \& \& v \& \&

\hline \& KOAT.TV
KOB.TV \& \& KVOO-TV \& \& KTSM-TV \& Marinette \& WmBV.TV 11

\hline
\end{tabular}

Location	Chan.	Locatlon Vernon Victoria	C.L. Chan.	Location Sydney Yarmouth	C.L. Chan.	Location	C.				
			7				BEC				
Burm	CJLh.TV. 3	LABRADOR		Vamour		C	CHADU.TV				
		Goose Bay	cfla.tV								
	CBXT.TV	MANITOBA					CJES.TV-1 70				
	CFRN-TV		ckos.		$\begin{gathered} \text { CFCL.TV- } 2 \\ \text { CKSO. } \\ \text { CHEHV } \end{gathered}$	$\begin{aligned} & \text { Estcourt } \\ & \text { Gaspe } \\ & \text { Gast } \end{aligned}$					
	CHSA.TV		-	Eliiot Lake		JonqulereMatane	CKRS.TV ${ }^{6}$				
Medicine H	CHATTV ${ }^{6}$			Kapuskasing Kenora	CFCLITVAT ${ }_{8}$						
						Matane					
		EW	SWICK								
8RITISH	COLUMBIA	Campbellton	RCD-TV 7	$\begin{aligned} & \text { London } \\ & \text { North Bay } \\ & \text { Ottawa } \end{aligned}$	$\begin{array}{cc} \text { CKGNTV } 10 \\ \text { CBOFT } \\ \text { CBOT } \end{array}$						
heroft	CFCr.tiv 210					Rimouski Riviere du. Loup	CKMI-TV				
escent		Saint John Upsalquitch L	$\begin{array}{ll} \mathrm{TV} & 4 \\ \hline \end{array}$		CJOH.TV CKVR.TV-1 S						
sson		NEWFOUNDLAND			$\begin{array}{cc}\text { CKVR-TV-1 } & 11 \\ \text { CHOV.TV } \\ \text { chex }\end{array}$	Riviere du-Loup	CKRT-TV				
				硡		Sherbrooke Three Rivers	CHLT-TV 7				
Kelow	$\begin{gathered} \mathrm{CHBC} \mathrm{~V} \\ \mathrm{CHGP-TV} 72 \\ \mathrm{CABC} \end{gathered}$			Port Arthur ${ }^{\text {PKPR-TV-I }} 2$Saut Ste. Marie CJIC.TV 2							
		Grand Falis CHEK.TV 6 SJCN.TV 4 St. Johnts Stephenville CFON:TV 6 CFSN.TV 8			$\begin{array}{cc} \text { CHSL.TV } & 9 \\ \text { CBFST } \end{array}$						
CABC. ${ }^{\text {d }}$				SASKATCHEWANCarlylo Lake CKDS.TV. 2							
		Sudbury Toronto	$\begin{array}{cc} \text { CKNO.TV } & 5 \\ \text { CFCL. TV } & 2 \\ \text { CBLT } & 6 \end{array}$		Carlo Lake	$\begin{array}{cc} \text { CJFB.TV } & 2 \\ \text { CHAB.TV } & 4 \\ \text { CKBITV. } \end{array}$					
	CBUAT.TV. 79			NOVA	OTIA						
	CHBC. TV.io ${ }_{5}$				CKLW-TV 9	Prince Albert	$\begin{array}{ll}\text { CKBITVV. } & 2 \\ \text { CKBITV. } & 2\end{array}$				
Prince George CKPG.T Saddle Mountain CHHC.TV.					CKNX.TV 8	-	$\begin{aligned} & \text { CKCK.TV } \\ & \text { CFQC.TV } \end{aligned}$$\text { CFJB.TV } 5$				
		CJCB-TV-1 ${ }_{6}$		PRINCE							
Trail	$\begin{array}{cc} \text { CHBC.TV. } & 5 \\ \text { CBUATT } & 11 \\ \text { CBUT } \end{array}$			New Glasgow Shelburne	CFCYHV: CBHT- 2	ISLAND CFCY.TV 13		Val Marie Wanganui Yorkton	$\begin{array}{cc}\text { Cкві.TV. } 2 & 2 \\ 7\end{array}$ CKOS.TV		
ancouver											

World-Wide Short-Wave Stations

The World-Wide Short Wave Stations section of White's Radio Log is, as its name implies, a log, that lists stations actually monitored by listeners in the United States, Canada and overseas. It is not intended to be a listing of all shortwave transmitters licensed as such listings contain numerous inactive transmitters, and low powered stations which are rarely heard by DX'ers. The stations listed here, therefore, are those most often reported and consistently heard during the past few months. Many have been monitored by DX CENTRAL the official Radio-TV Experimenter monitoring post in New York City.

Because of the fact that this \log represents actual monitoring reports rather than data
taken from published program schedules received from the stations, you may find that frequencies (and operating times) given here differ from official listings. This is because foreign short-wave stations frequently operate several kilocycles away from their assigned (and announced) frequencies. In addition, the schedules of these stations are often changed and the changes are not published in the schedules until many months later. We feel that the type of log which White's Radio Log is presenting represents a very realistic picture of the current status of short-wave broadcasting, and is something which cannot be obtained from any other sources.

Let us know. Although you will be able
to hear a great majority of the stations listed here, keep in mind that there will undoubtedly be a number of stations which cannot be heard at your location-just as there will be many stations which you will here which are not in our listing for this issue. We invite you to submit your short-wave broadcast station loggings for inclusion in forthcoming issues. Please be sure to include the following information on each station reported to us: approximate frequency, call sign and/or station name, city and country, time heard. Send this information to: DX CENTRAL, White's Radio Log, c/o Radio-TV Experimenter, 505 Park Avenue, New York, N.Y. 10022, U.S.A.

For the DX'er. If you care to roam the bands for DX, we present here some information which will be of invaluable use to you in tracking down DX stations.

It should be noted that most short-wave broadcasting stations operate within 9 specific frequency bands, established by international agreement. Each of these bands has a number, corresponding to the average wavelength of the frequencies within the band. The 9 bands are as follows:
$60-$ meter band $=4750 \mathrm{kc}$ to 5060 kc
$49-$ meter band $=5950 \mathrm{kc}$ to 6200 kc
41 -meter band $=7100 \mathrm{kc}$ to 7300 kc
31 -meter band $=9500 \mathrm{kc}$ to 9775 kc
25 -meter band $=11700 \mathrm{kc}$ to 11975 kc
19-meter band $=15100 \mathrm{kc}$ to 15450 kc
16 -meter band $=17700 \mathrm{kc}$ to 17900 kc
13 -meter band $=21450 \mathrm{kc}$ to 21750 kc
11 -meter band $=25600 \mathrm{kc}$ to 26100 kc
Although the current radio propagation conditions have made the high frequency bands (11 and 13 meter bands) relatively poor for DX'ers, the other bands are generally good during certain periods of the year.

Location	Name	Call	Kc.	EST	Location	Name	Call	Kc.	EST
	EUROP				CZECHOSLO Prague Prague	R. Prague R. Prague	OLR3A	$\begin{array}{r} 9550 \\ 11990 \end{array}$	2230 2240
Tirana	R. Tirana	-	9677	1630	DENMARK				
ANDORRA Andorra	R. Andorra	-	5995	1000	Copenhagen	V. of Denmark V. of Denmark	$\begin{aligned} & \text { OZF5 } \\ & \text { OZF7 } \end{aligned}$	$\begin{array}{r} 9520 \\ 15165 \end{array}$	$\begin{aligned} & 2110 \\ & 1000 \end{aligned}$
AUSTRIA Vienna	R. Austria	-	15240	0600	FINLAND Helsinki	Finnish BC	OlX4 -	15190	1105
Vienna	R. Austria	二	17765	1430	FRANCE				
Vienna	R. Austria	-	17805	1430	Paris	Paris Vous Parle	二	5955 6145	1630 0700
BELGIUM					Paris Paris	Paris Vous Parle	-	7160	1630
Brussels	Belg. R. \& TV	ORU	9720	1615	Paris	Paris Vous Parle	-	7240	0030
Brussels	Belg. R. \& TV	ORU	9730	1330	Paris	Paris Vous Parle	-	7280	2300
Brussels	Belg. R. \& TV	ORU	11720	1950	Paris	Paris Vous Parle	-	9560	2300
Brussels	Belg. R. \& TV	ORU	11850	1330	Paris	Paris Vous Parle	-	9585	0100
Brussels	Belg. R. \& TV	ORU	17860	1330	Paris	Paris Vous Parle	-	9755	2125
BULGARIA					Paris	Paris Vous Parle	-	11845	2125
Sofia	R. Sofia	-	6070	1630	Paris	Paris Vous Parle	-	11920	2128
Sofia	R. Sofia	-	9560	1400	Paris	Paris Vous Parle	-	15130	0200

WHITE'S
 RADIO LOG

Location	Name	Call	Kc.	EST
Paris Paris	Paris Vous Parle Paris Vous Parle	-	$\begin{aligned} & 15160 \\ & 17850 \end{aligned}$	$\begin{aligned} & 1329 \\ & 1230 \end{aligned}$
GERMANY (EAST)				
	R. Berlin Int'I.	-	11920	2115
Leipzig	R. Golos		10896	1000
Potsdam	R. Wolge		11990	0700
Potsdam	R. Wolga		15260	0708
Potsdam	R. Wolga		15280	0710
GERMANY (WEST)				
Cologne	Deutsche Welle	DM96	6100	1940
Cologne	Deutsche Welle	DMQ6	6145	0530
Cologne	Deutsche Welle	DM99	9545	2040
Cologne	Deutsche Welle	DM99	9605	1444
Cologne	Deutsche Welle	DMO15	15275	1205
Lampertheim	R. Liberty		7220	0600
Munich	V. of America	-	5975	1550
Great britaln				
London	BBC	MCM	3953	1900
London	BBC	GRK	7185	2250
London	BBC	GRJ	7325	2245
London	BBC	GSC	9580	2030
London	BBC	GRH	9825	2230
London	B.BC	GSD	11750	1700
London	BBC	GSF	15140	1725
London	BBC	GSO	15180	1245
London	BBC	GWR	15300	1630
London	BBC	-	15400	1703
London	BBC	-	17705	1636
London	BBC	-	17990	1630
GrEECE				
Thesaloniki	R. Thesaloniki	-	9710	0715
HUNGARY				
Budapest	R. Budapest	-	7220	1900
Budapest	R. Budapest	-	9833	1914
Budapest	R. Budapest	-	11910	1915
IRELANO				
Baile Atha Cliath	R. Oglaigh Na H-Eireann	-	17544	1155
italy				
Rome	RAI	-	9575	2200
Rome	RAI		15400	0905
Rome	RAI	-	17800	0913
LUXEMBOURG				
Villa Louvigny	R. Luxembourg	-	6090	1330
MONACO				
Monte Carlo	Trans World R.	-	7255	0130
Monte Carlo	Trans World R.	-	9633	1025
NETHERLANDS				
Hilversum	R. Netherlands	-	5985	2100
Hilversum	R. Netherlands		6020	1430
Hilversum	R. Netherlands	-	6085	1430
Hilversum	R. Netherlands	-	9525	0200
Hilversum	R. Netherlands	-	9590	0945
Hilversum	R. Netherlands	-	11730	0202
Hilversum	R. Netherlands		15425	1100
Hilversum	R. Netherlands	-	15445	0200
Hilversum	R. Netherlands		17775	1104
Hilversum	R. Netherlands	-	17810	0900
NORWAY R Norway LKJ 61300000				
Oslo	R. Norway	LKJ	6130	0000
Oslo	R. Norway	LLG	9610	0008
Oslo	R. Norway	LLK	11850	2030
Osio	R. Norway	LLM	15175	1235
POLAND				
Warsaw	R. Warsaw	-	7125	1700
Warsaw	R. Warsaw	-	7925	1700
Warsaw	R. Warsaw	-	9540	1230
Warsaw	R. Warsaw	-	9925	1704
Warsaw	R. Warsaw	-	11800	1706
Warsaw	R. Warsaw	-	11840	1704
Warsaw	R. Warsaw	-	15120	1726
PORTUGAL				
Lisbon	Lisbon Calling	-	6025	2100
Lisbon	Lisbon Calling		6185	2245
Lisbon	Lisbon Calling	-	15380	0915
SPAIN				
Madrid	R. Nacional R. Nacional	二	9360 9615	1520 1525

Location	Name	Call	Kc.	EST
S. AFRICA Paradys	REPUBLIC) Springbrook R.	-	11900	0600

WHITE'S
RADIO LOG

Location	Name	Call	Kc.	EST
M EXICO				
Mexico City	La Hora Exacta	XETT	9555	1000
Mexico City	R. Comerciales	XEHH	11880	1850
Mexico City	V. Amer. Latina	XEWW	9515	2100
Mexico City	V. Amer. Latina	XEWW	15160	2000
Sonora	R. Universidad	XEUDS	6140	1200
NICARAGUA				
Managua	R. Cultural	YNRC	5816	2000
Puerto Cabezo	R. Puerto		5920	2300
SWAN ISLAND				
Swan	R. Americas	-	6000	1755
Swan	R. Americas		11780	1330
WINDWARD ISLANDS				
St. Georges	Windward I. BC	-	3280	1730
St. Georges	Windward I. BC	-	5010	1500
St. Georges	Windward I. BC		11730	2030
St. Georges	Windward I. BC	-	15085	1500

SOUTH AMERICA

ARGENTINA
Buenos Aires Buenos Aires
Buenos Aires
Buenos Aires Buenos Aires
BOLIVIA
La Pazz
La Paz
Llallagua
BRAZIL
Aparecida Belo Horizonte Florianapolis Goiania

Recife

Rio de Janero
Rio de Janero
Salvador Sao Luis Sao Luis Soo Luis Sao Paulo Sao Paulo
Sao Paulo

				$\begin{aligned} & \text { Lima } \\ & \text { Lima } \end{aligned}$
R. Belgrano R. Belgrano	$\begin{aligned} & \text { LRYI } \\ & \text { LRY } \end{aligned}$	$\begin{aligned} & 6090 \\ & 960 \end{aligned}$	0130 0125	$\begin{aligned} & \text { Lima } \\ & \text { Lima } \end{aligned}$
R. Nacional	LRA32	9690	0100	Lima
R. Nacional		15295	2025	Lima
R. Splendid	LRSI	9740	0455	Lima
				Piura
R. Nacita			$\begin{aligned} & 2000 \\ & 2000 \end{aligned}$	Puno
R. Pio Doce	CP81	5955	0350	SURINAM Paramaribo
R. Aparecida	ZYR83	9635	1700	
R. Guarani R. Dario da Manha	PRH6 ZYT29	6175 9675	1945 0510	Montevideo
R. Brasil Central	ZYX2	4995	0300	venezuela
R. Journal do				Barquisimeto
Comercio	ZYK33	15145	1635	Caracas
R. National	PRL7	9720	2020	Coracas
R. Rio de Janero	ZYP23	5045	2030	Caracas
R. Cultura	ZYN29	9595	2030	Maracaibo
R. de Marinhao	ZYF24	4710	0335	CLANDESTINE
R. Timbira	ZYV9	4975	1600	
R. Timbira	ZYV9	15215	0408	
R. Cultura	ZYR60	4915	0300	
R. Excelsior	ZYR56	9585	0400	-
R. Nove de Julho	ZYR96	9620	0530	-

Location	Nome	Coll	Kc.	EST
CHILE Santiago	R. Corp. de Sant	CEI515	15150	1920
COLOMBIA				
Cali	R. el Sor-	-	5040	2330
Cali	R. el Sol	HJNE	6115	0725
I baque	V. de la Tolima	HJLB	6040	1200
Villavicencio	V. del Llano	HJIK	5955	2240
ECUADOR				
Cariamanga	R. Cariamanga	HCNK3	6235	2000
Esmeraldas	R. Iris	HCDY4	3945	0540
Quito	R. Atahualpa	HCHOI	4780	2315
Quito	R. Equitoriana	HCDGI	5032	2000
Quito	R. Nacional	HCYZI	4940	2200
Quito	R. Quito	HCQR)	4923	2330
Quito	V. de los Andes	HCJB	6050	'0200
Quito	V. de los Andes	HCJB	9745	2115
Quito	V. de los Andes	HCJB	15115	1500
Quito	V. de los Andes	HCJB	17890	1700
PERU				
Arequipa	R. Continental	OAX6D	9350	2200
Ayaviri	R. Ayaviri	-	5710	2130
Chiclayo	R. Chiclayo		5520	2345
Cuzco	R. Cuzco	OAX7A	6250	1800
Cuzco	T. Tahuantisuyo	OAX7C	6248	0000
Huancayo	R. Mundo	OCX4G	6160	0030
Huaraz	R. Huaraz	OAX3E	5710	0000
- lauitos	R. Amazonas	OAX80	9770	1000
lauitos	R. Atlantida	OAX8K	9625	1200
Iquitos	R. Nacional	OAX8C	9610	1715
Julizea	R. Juliaca	OAX7Z	5900	2345
Lima	Onda Popular	OAX4S	6260	0045
Lima	R. America.	OAX4W	9412	0050
Lima	R. La Cronica		9504	0115
Lima	R. El Sol	OBX 4 C	15180	1910
Lima	R. Inca	OCX4W	4765	2330
Lima	R. Nacional		9562	2220
Lima	R. Nacional	OAX4T	15150	1040
Lima	R. Victoria	OAX4Q	6010	0045
Piura Puno	R. Progresso		5910	0045
Tarapote	R. Tropical	OAX9D	99710	2315 0630
SURINAM				
	R. Surinam	PZC	15445	1630
URUGUAY				
Montevideo	R. Espectador	CXAI9	11835	2200
venezuela				
Barquisimeto	R. Barquisimeto	YVMQ	4990	1910
Caracas	V. de la Patria	YVKX	3305	1942
Caracas	R. Nacional	YVKO	6170	1845
Caracas	R. Rumbos	YVLK	4970	0100
Maracaibo	R. Popular	YVMG	4810	2200
CLANDESTINE				
	R. Liberdad	-	7313	1800
	R. Omega	-	11550	1515
	R. Portugal Livre	-	9575	1630
	R. Peykje	-	11400	1100
-	R. Peykje	-	11695	1107

Name
Call
Kc. EST

Lissajous Figure Quiz

(Quiz on page 64)

$2: 1$	$3: 2$	$3: 1$
$5: 3$	$5: 1$	$1: 1$
$4: 1$	$4: 3$	$5: 2$

Lissajous figures should not be a mystery to you. If you never saw them on an oscilloscope, it is high time that you did. Try to dig up two audio signal generators and an oscilloscope on one test bench. The results are worth the effort.

Echo Collecting

(Continued from page 51)

so that it is positioned at the focal point of the particular reflector.

A more versatile mount can be made from an electrical outlet box bracket obtainable from hardware and electricians' supply stores. The bracket is used to hold outlet boxes between ceiling beams in basements; it can be adjusted to different lengths by sliding the inside section in or out and then fastening the clamp in the middle. If you buy several of these brackets and mount one of the outer members on your reflector you can attach several microphones and a speaker to separate inside members to permit rapid interchangeability of the accessories. Shorten the brackets if necessary to bring the microphones to the focal point of the parabolic reflector.

Reflector stands: The reflectors are clumsy to handle unless you mount them on a suitable stand. A photographer's tripod is ideal. If the tripod has a two-way tilt-top, the reflector can be bolted to the bolt that ordinarily holds the camera. Fit a large angle iron to the back of the reflector and drill a hole through the projecting portion through which the tripod bolt can project; a nut holds the assembly together. A counterweight may be installed, too!

Echo Surveying: Before reading this section, study the Echo Survey Quiz drawings to see if you can suggest suitable solutions to the theoretical echo surveying problems described. The compare your solutions with those given below:

The distance measurements are all based on measuring the length of time required to send a sound, created near the tape recorder, to the reflecting surface and back again to the recorder. After the original sound and its echo have been recorded, play the tape back slowly and carefully work the position of each signal on the tape with a wax pencil. Measure the distance between these marks.

Suppose the measured distance is exactly 15 inches and you are using a tape transport speed of $71 / 2$ inches per second. It obviously took the sound 2 seconds to travel the entire distance to and from the reflecting surface. It therefore required 1 second for the sound to travel the distance from its source to the reflecting surface. Sound travels at a speed of about 1088 feet per second in air-
hence you know that the object (cliff) is 1088 feet away.

Here is how this general method of distance measurement would apply to the problems posed.

Problem I: The recorder and sound source are located at position R. A clear echo is obtained from cliff A. How far is the cliff from R?

The tape recorder is turned on and a test sound is created; this sound and its echo are taped and the tape is analyzed by the method described above. Divide the total time by two and multiply by 1088 to get the answer in feet.

Problem II: The recorder and sound source are located somewhere between two facing cliffs, as in a canyon. How would you measure the distance between the canyon walls and the distance of the recorder from each wall?

Beam the sound from R to either cliff A or B. Calculate this distance as in problem I. Repeat for the other cliff. These answers locate the position R in the canyon; the sum of the answers indicates the canyon width.

Problem III: The two cliffs A and B are very nearly in the same direction but B is farther away than A. The recorder and sound source are at R. How far is position R from cliffs A and B. What is the direction from A to B ?

This problem is obviously quite similar to problem II. The tape will record the original sound and two echoes. Distances RA and and RB can be calculated from the tape measurements (signal to echo A and signal to echo B). Subtracting distance RA from distance $R B$ will reveal the distance AB.

Problem IV: A test sound is beamed from R to a nearby cliff A; the test sound and its echo are recorded. A second sound is similarly beamed at cliff B and recorded. Note that these cliffs neither face each other nor are they in line with each other as in problem III. How far is R from each cliff? How far is cliff A from cliff B?

First the angle ARB must be determined. This can be done by mounting a large protractor horizontally under your parabolic reflector and putting a pointer on the reflector edge. When the reflector is swung from one cliff to the other the angle of movement can be read off the protractor.

If you are a mathematics buff you now have all the required information to calculate the desired answers.

Meter Maid

(Continued from page 109)

Place the glass squares over their respective holes (see drawing) in such a manner that light does not escape between glass and cabinet. The technique used was to glue the glass squares to the outside of the cabinet, then frame them with black felt cut and glued to the cabinet exterior as shown.

Since both rheostat and switch are on the same panel, wire the power line first. Then wire the switch to the rheostat and jump two wires from the rheostat to the lamp socket. The hinged front panel can now be connected to the cabinet.

Operation of the Meter Maid is simplicity itself. Its initial calibration, however, must be made with a light meter of known accuracy.
Calibrate as follows: Position an accurate meter directly above the opal glass, then turn the rheostat to vary the light and note the meter reading at various points on the numbered rheostat dial. Note the proper meter exposure for each dial position and make a calibration chart. For greater accuracy, different combinations of shutter speeds should be calibrated.

The calibration for low-level light scales is made in the same manner, but with readings taken from the smoked glass. The ruby and cobalt glasses allow the same calibrating technique, but these are used for running checks on hot and cold colors for color film.

DX Offbeat

(Continued from page 111)

nation to nation (our Spanish phantom???), National Council of Churches and black magic.

It also seems that the space ship from Clarion had a lady captain who liked to dance all night, swim, laugh and with whom Mr. B became very friendly. Grant considered this highly improper. As he puts it "Yes, I suppose if she were here, she would be in the dance halls, pool rooms, beer joints, road houses and night clubs."

If an American SWL were to believe Grant, he might decide to give up the cold war right now. After all, according to Radio Moscow, the Soviet observatory at Pulkovo did discover a planet outside our Solar System. But from the DX viewpoint, a QSL from Clarion has all the essential qualifications for "catch of a lifetime." First, it certainly is difficult to hear, even rougher than KPDQ which operates daytime only. Second, it would require years of waiting (and how). Then the content would apparently be attractive, like Cairo's dancing girl QSL. Finally, and most important, it would have that clandestine "netherworld" character required by many DX natures. In short a QSL from Clarion would be the ultimate DXthat which could never quite be logged, a Nibi Nibe or Radio Windhoax.

DXers too: Just to complete our picture, we have some wild equipment. Specifically, that old device making a come back, the human antenna. Spiritualists, astrologers, clairvoyants, etc. usually peg their claims on the body's reception of various vibrations, cosmic, mental and other dubious categories. But your body actually is bombarded by one vibration type-radio waves-and can serve as a pretty fair antenna.

If your receiver is equipped with an external antenna connection, hitch a short piece of bare copper wire onto it and grip the end of this wire. If your set has only a built in loop, you can obtain similar results by placing a finger on it. WARNING: If your receiver is an ac-dc model of that type which is currently on the market, skip the human antenna hit.

Now we can't promise you'll log Clarion via this method but your scribe did bag NUZY, the Campeche patrol vessel operated by the U. S. Coast Guard and which has marine weather broadcasts on 2670 kc at 1920, 0120 and 0720 EST.

Stereo

(Continued from page 79)
it forward just enough so you can slide your hand behind it. Insert the stop pins and their locking springs.

Mounting the Equipment. Slide the amplifier and FM tuner into place on their shelves, still minus the brass trim plates. Push the two units forward until they protrude slightly. If you plan to use the shelf-mounting hardware available from H. H. Scott, this is the time to fasten the equipment. Then cover the fronts of the units with the brass trim plates, place the locking nuts and attach the knobs.

The turntable installation is quite simple just place it on the shelf and attach the plugs. Place it so the front of the wood base is flush with the front of the shelf. This will bring the controls out to a point where they are easily accessible. If you want a more permanent installation, insert two wood screws through the bottom of the shelf into the wood base.

Wire the T-pads to the amplifier and the terminal strip on the rear of the cabinet. The left-hand pad and terminals, as you face the cabinet from the front, should go to the left speaker; the right-hand pad to the right speaker. Solder spade lugs to the ends of the wires that will be attached to screw terminals. The last step in wiring the cabinet is attaching the FM antenna. A folded-dipole type made of 300 -ohm antenna lead-in wire
is provided with the Scott Tuner. This type of antenna will work properly where a strong signal is available, such as in large city metropolitan areas. In rural areas, an outside antenna will be needed.

The last step is placing the tape recorder on the platform. Run the connecting cables to the amplifier and plug them into the appropriate jacks on the recorder. Note that these wires will pass through the 1 -inch holes in the rear of the amplifier shelf. Since the recorder will be playing back through the stereo components, shut off the recorder's local speakers by inserting blank phone plugs into the two jacks marked "Ext. Speakers." Plug it in and you're set for action.

Check out the wiring before you plug in the main AC power cord. Make sure there are no bare wires and that all soldered connections have been taped. Plug the unit in and throw the main power switch. The fan will start immediately, and will run continuously as long as the main power switch is on. The individual units all have on-off switches of one kind or another. You can turn on the amplifier and tuner switches and leave them on all the time. The turntable and tape recorder should always be turned off independently, even though the main power switch will shut them off too. This is to conserve the rubber parts which may not be disengaged if the unit is playing when you turn off the main switch, and can cause "flats" in the turntable idler wheel and the tape recorder capstan pressure roller.

FM Pocket Mike

(Continued from page 46)

One other test you should include is checking for interference to the side bands of the FM band. Fortunately, these side bands are channels 6 and 7 on your TV set and can be checked easily. Operate the FM transmitter while tuning to the channels one at a time. If you do not interfere with the audio or sound signals, you did a good wiring job.

Interference can only mean a sloppy wiring job, a poorly assembled oscillator coil L1, or adjustments are needed. The physical length of L1 is very critical-squeezing or extending of L 1 alters the tuning range.

Once proved to be operating correctly, the FM transmitter can serve to tie into any FM tuner up to 200 feet away. Remember, do not attempt to go into the broadcasting business or interfere with your neighbors.

Kit Report

(Continued from page 63)

is made to oscillate and beat against the incoming signal. It's a neat system for providing code reception without an extra tube. And since the control introduces feedback in the IF amplifier, it also has an effect on the set's selectivity, or ability to separate close-packed signals. Of course, the knob also controls sensitivity of the set when excessively strong signals cause overloading.

Thus, the Star Roamer shapes up as a package that should be of interest to the SWLer who is pinched in the pocket but who wants the superiority of a superhet-type circuit. There are compromises, but the kit shows plenty of resourcefulness on the part of its designers. Despite the $\$ 39.95$ limit, they've managed to ram a number of appealing features into the set.

FRIEEASeven Steps to the Job You Want NOW YOU CAN SOLVE "TOUGH" MATH PROBLEMS LIKE THIS!

Yes, in just hours you can turn into a "math wizard" even though you know little about arithmetic! Surprise your friends with your "E-Z MATH" ability . . . enjoy job security and advancement . . . a better job . . . Increase your self-confidence and prestige-all through amazing new "E-Z MATH".

Abstract

The world is moving fast these days. In good times and bad the ability to handle mathemat. isal problems in our age of electronics, automation and nuclear science is becoming more and more necessary for promotion on the job and for higher pay. If you don't think you have what it takes-and if you believe that "math" is beyond your power-then you're in for the biggest surprise of your life! For now you CAN learn to DIVIDE, MULTI. PLY. ADD and SUBTRACT figures not only quickly and easily-but also in a FRACTION of the time the average person requires! You can actually solve such rough problems as multiplying a 5 -figure number by a 7 -figure number in your head without ever rouching pencil to paper . . . or dividing 836791 by 284. for example. in exactly 15 seconds-even if you "Aunked" math in school! The secret of success in "math" is NOT laborious study and wearisome practice--but. on the contrary, knowledge of SPECIAL SHORT CUTS, LITTLE-KNOWN METHODS of calculation and arithmetical "tricks" that take the work and gamble out of figuring. These methods-so new and radical that they have not yet been incorporated in our school systems-take but a few hours to learn. Yet they permit you to OUT:THINK and OUTFIGURE the average high school and college graduate who hasn't had the benefit of these amazing methods! You can even BEAT AN ELECTRIC CALCULATOR in answering many

\section*{Figure wit A^{2} 举
 \section*{SPEED and ACCURACY!}}

"E:Z MATH" shows you in plain, eagy-tounderstand language how to cur figuring time in HALF and even in QUARTERSand at the same time arrive at the correct answer in every case! The methods and short cuts. you learn in "E-Z MATH" are fool. proof require almose NO memorization ... and are so practical thar you'll find your self using these systems virtually every day You'll become an expert in no time at alt. Before you know it-you're ready to move into that important job you've always wanted bilicy 10 drive highead and in greater responsiand to amaze, sur magic powers of mental arithmeric! Yes. "math" will open up new opportunities for you, since the person with "math" know-how can just about "write his owa cicker.

Sharpen Your Brain Powerwith Short-Cut "E-Z MATH"!

Imagine being asked to divide 38634 by $891 / 2$ -and rattling off the answer absolurely correctly in 7 seconds! Or-multiplying 369.34 by 982.7 and coming up with the correct reeach with 6 digits-and supplying the righ cotal every time! People will GASP at you fabulous lightning-quick mind. You'll be able to JUGGLE numbers . do STUNNING TRICKS . . amaze your friends and bossand be a "master mind!

CAN YOU SOLVE THESE EVERY-DAY BUSINESS AND SOCIAL ARITHMETIC PROBLEMS IN THE TIME ALLOWED? YOU CAN DO THEM EASILY EVEN WHEN BLINDFOLDED-AFTER YOU'VE READ "E-Z MATH"!

W'ith a knowledge of "E-Z MATH" you no longer need be puzzled by such every-day figuring as computing interest charges on insfallment purchases of division, multiplication and addition of fractions
long rows of numbers with 100% accuracy long rows of numbers with 100% accuracy whole numbers \rightarrow plus many, many orher prac cical and valuable pointers you will use daity to your advantage. The few hours you spend with this course will really pay.off. Numbers are the basic instrument of all scientific and rechnical work. The man or woman who can use "math" is rewarded, recognized quickly. moves abead in his job faster and more surely!

Order Today on
 No-Risk Free Home Trial!

Send for "E-Z MATH" coday on our no-risk money-back guarantee: use the book for 30 days . prove to your own satisfaction how far a knowledge of "E-Z MATH" can ad. vance you in business and social life. If you don't agree that this is the best intestment you've ever made. if your family and friends aren't AMAZED by your new abilityreturn the book for full and prompt refund.

WHAT THEY SAY:
metic wey whar nearly always failed arith. my copy old-method orithmeric. Nhen he found you can put the numbers on a blackboord, he can multiply 8391726547 by 12 . It's amazing and incredibly easy. I use it myself on my job and my wife uses it to check grocery Jists."

A Foither
You have a unique new teaching approoch for
$13 / 4 \%$ inferest per month amounis? Solve in seconds)

(Solve in 3 seconds)

WHAT IS "E-Z MATH"? E-Z MATH" is based on MATM'A?

 learn and remarking wirh numbersazing new ate than you ever dreamed and more ier to sook math in school newed possible more accur. newest way of reading num. Youll be shown you they were words-ang numbers-just as the the ing them almost at of adding and subthoush You'll be shown at a slance-INSTANETact. adding hundred's a und evee new rechnique $^{\text {berg }}$ w bers withour ever making thousands of num you'll never add highering a mistake of num blems withoul whiz through eleven! Yes, from blems wirhour whiz through alf figuring from through income wasting your valuable fing pro-homework never again as fasr as checking grocery timenever again disfike as a calcularocery lists, acrually ENJOY using avoid numbers-You'li business!

FREE! FREE! FREE!2000:

7 STEPS TOWARD GETTING $\dot{\text { A }}$ JOR"

 Reajer's Digest outhar reveals liptle known but amaxingly effective methods to help you win the jab vou wont. Just pick your job ond Jand if! To learn how mail coupon beJow with your order for "E-Z MATH" G for your FREE copy of "' STEPS TOWARD GET. TIN'S A JOB." MAIL NO-RISK COUPON NOW?een. Pupils' morks seem to be slimbing as a reuli. Should help in any ob. Excellent for home utoring use.
-SCHOOL PRINCIPAI Thonk you! Thank you Thonk you! All our child. on are using your system too, and it is terrific My husband and 1 ore us. ing it-and it works! My husband has already re. ceived a job advancement with fremendous boost in pay. Best investment we have ever made!

HOUSEWIFE

IB Steys Toward cietting A Job

E-Z MATH PROGRAM DEPT. R-123

285 Market St., Newark, NEW JERSEY

OK! Prove to me that "EEZ MATH", can bring me higher pay prestige and soclal advancement! Rush book to me postpaid in plain wrapper for $30-d a y$ free examination and use, if 1 don't agree with everything you say about "E Z MATH"-1 may return
 NAME \square (Pleove Print)
ADORESS
ciry

WHERE You Train is as Important As Your Decision to Train

Electronics is a growing and expanding industry. That's why so many ambitious men are training for carcers in this exciting ficlel. They recognize the opportunities to fill in interesting and important positions. But wherr a man trains and how the school of his choice teaches the many ficlels of ElectronicsAutomation, Radio-Tclevision . . . how it encourages hitu to reach his roals and realize his ambitions . . . is most important to his success.
This is a fast changing world. A school offering Electronics courses must kecp pace. That's why NRI-with nearly 50 years of specialized experience-now offers nine choices of training. Select the course of most interest to you and receive the kind of home-study training that prepares you for a specialized career. NRl's large staff of specialists is always on the job keeping your course material up-to-date . . . helping you earn your way while you train . . . assisting you with job placement. In short, NRI is qualified to help you grow.
Special Training Equipment Included
 The NRI"learn-ly prac. tice" method is the timeproved way to better pay. It makes training casier. faster, better. Most NRI courses include-at mo extra cost - special training equipment to give shop and laboratory experienee in your own home. All aguipment is yours to keep.
Projects you build, experiments you perform, make NRI lessons cone to life. Complex sulijects take on real meaning. You measure voltage and current in circuits you builal yourself. You use a Vacuum Tube Volmeter which you construct. Later on. you progress to more involved experiments. If you like working with your hands, you'll enjoy learning Electronics with NRI.

Oldest and largest School of its kind

NRI training of the 60 's is based on nearly half a century of experience gaineal from training ithousands of men like yourself for new eareers. NRI has carned the confidence of students, gratuates and the filectronies industry. They all recognize NRI training material as an outstanding educational value. And as the oldest and largest Radio.Television-Electronics home-study selıool, NRI can supply training at reasonalile cost. Wail the postage-free card today for facts on the school, on opportunities in Electronies, on monthly payment plans and special Trial Enrollment Offer. NRI TRAINING, Washington 16, D. C.

JOIN THE THOUSANDS WHO TRAINED AT HOME FOR NEW CAREERS WITH NRI

"I want to thank NRI for making it all possible," says IRobert I.. L'Heureux of Needham. Mass., who sought our joh consultanis advice in making applications and is now an assistant Field Fingineer in the DATAmatic Div. of Min. neapolis-Honeywell. working on data systems.
"I have gone ahead financially ever since I enrolled with NRI." writes Gerald W, Kallies, now a chief Instrument Technician of Rio Algom Nordicuranium mines and part-time TV engineer for CKSO-TV. Elliott Lake. Ont. He enrolled with NRI on finishing high school.

His own full-time Radio.TV shop has brought steadily rising income to Harlin C Robertson of Oroville. Calif In addition to employing a full-time technician. two NRI students work for full-time technician. Rwo Not about NRI training. "ithink it's tops!"

NOW 9 NRI COURSES SEE OTHER SIDE

NOW 9 WAYS to Assure Advancement or Turn Your Hobby Into a New Career

No matter how much one of NRI's nine ca help you toward a br fields of Automatior never been a tir Electronics kno Industries, bus: with practics and superv; jobs for
w little education you have aing home-study courses can re in the great and growing Radio-Television. There has ubitious men with specislized as much in demand as today. ernment, the military all need men is training to install, operate, service tent. Automation continues to eliminate rabor as fast as skilled technicians are avail-.ectronically-controlled machines.

TRAIN AT HOME THE

Tood jobs await Communications technicians, since broad. casting now means more than entertainment: becoming an essential in truchs, cars, trains, planes, ships, etc. In the home, Color TV has come of age along with FM stereo multiplexing and increasing popularity of Hi.fi; television and radio means more opportunities for Service Technicians in spare time or full time businesses of their own. NRI training has been tailored to meet present and future needs of Flectronics. Communications and Servacing. Check the field of most interest to you and mail the postage-free card now. NRI TRAINING, Washington 16, D. C.

SEE OTHER SIDE

Cut Out and Mail Now

PE 64-PAGE

NO STAMP NECESSARY NRI PAYS POSTAGE

National Radio Institute

 Washington 16, D.C.4AB3
Please send me, without cost or

The Amazing Field of Electronics

BASIC ELECTRONICS

An abbreviated, 26 -lesson course covering Automa. tion-Electronics, Radio-Television language, components and principles. Ideal for salesmen, hobbyists and others who find it valuable to be familiar with the fundamentals of this fast-growing industry.

MATH FOR ELECTRONICS

A short course package of five carefully prepared texts that take you from basic arithmetic review through graphs and electronic formulas. Quick, com plete and low in cost.

AVIATION COMMUNICATIONS

For men who want careers working with and around planes. Covers direction finders, ranges, markers, loran, shoran, radar, landing systems, transmitters. Prepares you for FCC License exams. obligation, the latest NRI catalog telling about your school and the 9 ways to train at home for a career in Electronics-Automation, Radio-Television. (No salesman will call.)

Name \qquad
(Please Prial)
MARINE COMMUNICATIONS
Shipboard transmitting equipment, direction finders, depth indicators, radar are all covered in this course. You prepare for your First Class Radiotelephone License with Radar Endorsement.

MOBILE COMMUNICATIONS
Training in installation and maintenance of mobile equipment and associated base stations like those used by fire and police, taxi companies, etc. Prepares you for First Class FCC License exams.

CUT OUT AND MAIL POSTAGE-FREE CARD

[^0]: Your present occupation
 Name__ Age___

 Addreas
 City \quad Approved for Veteran's Training under Korean Gl Bill. EX-5

[^1]: Name \qquad Age

 Addres: Apt

 City
 \square Check here if you are under 16 years of ag

[^2]: Parts List
 C1-20 mf., 150-volf DC electrolytic capacitor
 C2-4 mf., 150 -volt DC electrolytic capacitor
 D1-IN1693 diode, 600 ma., 200 PIV (General Electric)
 K 1 -s.p.d.p., $5000-\mathrm{ohm}$ coil relay (Potter \& Brumfield type RS5D-5000 or equiv.)
 NE-77-neon bulb, tree terminal (GE type NE-77)
 PC-cadmium sulphide photocell (Lafayette \#M5-855)
 R1-1,000,000-ohm potentiometer, linear taper, slotted $1 / 4^{\prime \prime}$ shaft
 R2-22,000-ohm $1 / 2$-watt resistor, 10%
 R3-470,000-ohm $1 / 2$-watt resistor, 10\%
 S1, S2-s.p.d.t. slide or toggle switch
 TB1-3-terminal barrier terminal block (Cinch-Jones Series 3-164)
 $1-3 \times 4 \times 5^{\prime \prime}$ aluminum chassis box (Bud CU2105-A)
 Misc.-Grommets, terminal strip, hardware, wire, solder, etc.

 ## Estimated cost: $\$ 12.25$

 Estimated construction time: $\mathbf{3}$ hours

[^3]: Every effort has been made to ensure accuracy of the information listed in this publication, but absolute accuracy is nat guaranteed and af caurse, anly information ovailable up to press-time could be included. Capyright 1963 by Science \& Mechanics Publishing Ca., a subsidiary of Davis Publications, Inc., 505 Park Avenue, New Yark, New Yark 10022.

[^4]:
 -

